1880: [Sdoi2009]Elaxia的路线

Time Limit: 4 Sec  Memory Limit: 64 MB
Submit: 2049  Solved: 805

题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1880

Description:

最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间。Elaxia和w**每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长。 现在已知的是Elaxia和w**所在的宿舍和实验室的编号以及学校的地图:地图上有N个路 口,M条路,经过每条路都需要一定的时间。 具体地说,就是要求无向图中,两对点间最短路的最长公共路径。

Input:

第一行:两个整数N和M(含义如题目描述)。 第二行:四个整数x1、y1、x2、y2(1 ≤ x1 ≤ N,1 ≤ y1 ≤ N,1 ≤ x2 ≤ N,1 ≤ ≤ N),分别表示Elaxia的宿舍和实验室及w**的宿舍和实验室的标号(两对点分别 x1,y1和x2,y2)。 接下来M行:每行三个整数,u、v、l(1 ≤ u ≤ N,1 ≤ v ≤ N,1 ≤ l ≤ 10000),表 u和v之间有一条路,经过这条路所需要的时间为l。 出出出格格格式式式::: 一行,一个整数,表示每天两人在一起的时间(即最长公共路径的长度)。

Output:

一行,一个整数,表示每天两人在一起的时间(即最长公共路径的长度)

Sample Input:

9 10
1 6 7 8
1 2 1
2 5 2
2 3 3
3 4 2
3 9 5
4 5 3
4 6 4
4 7 2
5 8 1
7 9 1

Sample Output:

3

题解:

由于题目中有两个起点和终点,我们直接从每一个点出发跑一遍最短路。由于范围只有1500,所以我们可以直接枚举两个点,然后根据这两个点来计算维护一下答案就好了。

具体看代码吧,证明应该还是比较简单的。因为如果从s1出发到i点的最短路记做d1,从t1到j点的最短路记作d2,他们之间的最短路距离为d,那么说明i和j之间的最短路为d-d1-d2

如果此时s2,t2对于i,j两点同样满足上面的等式,即d'-d1'-d2'为i,j两点之间的最短路,那么说明这时i,j之间的最短路即为公共路径。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <queue>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int M = ,N = ;
int n,m;
int s1,s2,t1,t2;
struct Edge{
int u,v,w,next ;
}e[M];
int tot;
int head[N],d[][N],vis[N];
struct node{
int u;
ll d;
bool operator < (const node &A)const{
return d>A.d;
}
};
void adde(int u,int v,int w){
e[tot].v=v;e[tot].w=w;e[tot].next=head[u];head[u]=tot++;
}
void Dijkstra(int s,int id){
priority_queue <node> q;memset(d[id],INF,sizeof(d[id]));
memset(vis,,sizeof(vis));d[id][s]=;
q.push(node{s,});
while(!q.empty()){
node cur = q.top();q.pop();
int u=cur.u;
if(vis[u]) continue ;
vis[u]=;
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(d[id][v]>d[id][u]+(ll)e[i].w){
d[id][v]=d[id][u]+(ll)e[i].w;
q.push(node{v,d[id][v]});
}
}
}
}
int main(){
ios::sync_with_stdio(false);cin.tie();
cin>>n>>m;
cin>>s1>>t1>>s2>>t2;
memset(head,-,sizeof(head));
for(int i=;i<=m;i++){
int u,v,w;
cin>>u>>v>>w;
adde(u,v,w);adde(v,u,w);
}
Dijkstra(s1,);Dijkstra(t1,);
Dijkstra(s2,);Dijkstra(t2,);
int mn1=d[][t1],mn2=d[][t2];
//cout<<mn1<<" "<<mn2<<endl;
int ans = ;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i==j) continue ;
int need = mn1-d[][i]-d[][j];
if(mn2-d[][i]-d[][j]==need||mn2-d[][j]-d[][i]==need){
ans=max(ans,need);
}
}
}
cout<<ans;
return ;
}

BZOJ1880: [Sdoi2009]Elaxia的路线(最短路)的更多相关文章

  1. BZOJ1880:[SDOI2009]Elaxia的路线(最短路,拓扑排序)

    Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w**每天都要奔波于宿舍和实验室之间, ...

  2. 【BZOJ1880】[Sdoi2009]Elaxia的路线 最短路+DP

    [BZOJ1880][Sdoi2009]Elaxia的路线 Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起 ...

  3. 【BZOJ1880】[SDOI2009]Elaxia的路线 (最短路+拓扑排序)

    [SDOI2009]Elaxia的路线 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. \(El ...

  4. BZOJ 1880: [Sdoi2009]Elaxia的路线( 最短路 + dp )

    找出同时在他们最短路上的边(dijkstra + dfs), 组成新图, 新图DAG的最长路就是答案...因为两人走同一条路但是不同方向也可以, 所以要把一种一个的s,t换一下再更新一次答案 ---- ...

  5. bzoj1880: [Sdoi2009]Elaxia的路线(spfa,拓扑排序最长路)

    1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 1944  Solved: 759[Submit][St ...

  6. Luogu P2149 [SDOI2009]Elaxia的路线(最短路+记忆化搜索)

    P2149 [SDOI2009]Elaxia的路线 题意 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们必须合理地安排两个人在一起的 ...

  7. [luogu2149][bzoj1880][SDOI2009]Elaxia的路线【拓扑排序+最短路+DP】

    题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间 ...

  8. BZOJ1880 [Sdoi2009]Elaxia的路线 【最短路 + dp】

    题目 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提 ...

  9. [BZOJ1880] [Sdoi2009] Elaxia的路线 (SPFA & 拓扑排序)

    Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w**每天都要奔波于宿舍和实验室之间, ...

随机推荐

  1. Oracle存储过程练习题

    1.1.创建一个过程,能向dept表中添加一个新记录.(in参数) 创建过程 create or replace procedure insert_dept ( num_dept in number, ...

  2. leetcode合并区间

    合并区间     给出一个区间的集合,请合并所有重叠的区间. 示例 1: 输入: [[1,3],[2,6],[8,10],[15,18]] 输出: [[1,6],[8,10],[15,18]] 解释: ...

  3. 关于excle导数据的一些代码笔记

    package com.bonc.util; import java.io.File; import java.io.FileInputStream; import java.io.FileOutpu ...

  4. vim常用命令—撤销与反撤销

    命令模式下(即按ESC后的模式) u 撤销 Ctrl r (组合键) 反撤销<后悔撤销>

  5. Python高级编程-使用SQLite

    SQLite是一种嵌入式数据库,它的数据库就是一个文件.由于SQLite本身是C写的,而且体积很小,所以,经常被集成到各种应用程序中,甚至在iOS和Android的App中都可以集成. Python就 ...

  6. 将footer固定在页面最下方

    方法一: HTML结构: <div id="id_wrapper"> <div id="id_header"> Header Block ...

  7. Git 命令详解及常用命令

    Git 命令详解及常用命令 Git作为常用的版本控制工具,多了解一些命令,将能省去很多时间,下面这张图是比较好的一张,贴出了看一下: 关于git,首先需要了解几个名词,如下: 1 2 3 4 Work ...

  8. 重构 之 总结代码的坏味道 Bad Smell (一) 重复代码 过长函数 过大的类 过长参数列 发散式变化 霰弹式修改

    膜拜下 Martin Fowler 大神 , 开始学习 圣经 重构-改善既有代码设计 . 代码的坏味道就意味着需要重构, 对代码的坏味道了然于心是重构的比要前提; . 作者 : 万境绝尘 转载请注明出 ...

  9. Internet History

    Alan Turing and Bletchley Park Top secret breaking effort(二战破译希特勒密码) 10,000 people at the peak(team ...

  10. Alpha冲刺——第三天

    Alpha第三天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...