转发请注明原创地址:https://www.cnblogs.com/dongxiao-yang/p/9403427.html

flink任务的deploy形式有很多种选择,常见的有standalone,on yarn , Meos , Kubernetes等方式,目前公司内部统一采用flink on yarn的 single job模式(每个flink job 单独在yarn上声明一个flink集群),本文分析的是flink1.5.1版本源码使用legacy 模式提交yarn single job到yarn集群的部分源码。

典型的flink提交single job命令格式如下: ./flink run  -m yarn-cluster -d  -yst -yqu flinkqu -yst  -yn 4 -ys 2 -c flinkdemoclass  flinkdemo.jar  args1 args2 ...

flink脚本的入口类为org.apache.flink.client.cli.CliFrontend

在CliFrontend的main函数中首先通过loadCustomCommandLines方法加载了提交yarn任务初始化一个重要工具类

org.apache.flink.yarn.cli.FlinkYarnSessionCli
    public static List<CustomCommandLine<?>> loadCustomCommandLines(Configuration configuration, String configurationDirectory) {
List<CustomCommandLine<?>> customCommandLines = new ArrayList<>(2); // Command line interface of the YARN session, with a special initialization here
// to prefix all options with y/yarn.
// Tips: DefaultCLI must be added at last, because getActiveCustomCommandLine(..) will get the
// active CustomCommandLine in order and DefaultCLI isActive always return true.
final String flinkYarnSessionCLI = "org.apache.flink.yarn.cli.FlinkYarnSessionCli";
try {
customCommandLines.add(
loadCustomCommandLine(flinkYarnSessionCLI,
configuration,
configurationDirectory,
"y",
"yarn"));
} catch (NoClassDefFoundError | Exception e) {
LOG.warn("Could not load CLI class {}.", flinkYarnSessionCLI, e);
} if (configuration.getString(CoreOptions.MODE).equalsIgnoreCase(CoreOptions.NEW_MODE)) {
customCommandLines.add(new DefaultCLI(configuration));
} else {
customCommandLines.add(new LegacyCLI(configuration));
} return customCommandLines;
}

根据启动参数,CliFrontend开始运行方法run()->runProgram(),runProgram内部与yarn相关的一个重点方法为

client = clusterDescriptor.deploySessionCluster(clusterSpecification);

上文中的clusterDescriptor就是前面的FlinkYarnSessionCli执行createClusterDescriptor()方法后产生的集群属性描述对象,在本模式中对应的具体类是org.apache.flink.yarn.LegacyYarnClusterDescriptor,父类为AbstractYarnClusterDescriptor

deploySessionCluster内部进一步调用deployInternal来向yarn集群提交一个flink集群。

protected ClusterClient<ApplicationId> deployInternal(
ClusterSpecification clusterSpecification,
String applicationName,
String yarnClusterEntrypoint,
@Nullable JobGraph jobGraph,
boolean detached) throws Exception { // ------------------ Check if configuration is valid --------------------
validateClusterSpecification(clusterSpecification); if (UserGroupInformation.isSecurityEnabled()) {
// note: UGI::hasKerberosCredentials inaccurately reports false
// for logins based on a keytab (fixed in Hadoop 2.6.1, see HADOOP-10786),
// so we check only in ticket cache scenario.
boolean useTicketCache = flinkConfiguration.getBoolean(SecurityOptions.KERBEROS_LOGIN_USETICKETCACHE); UserGroupInformation loginUser = UserGroupInformation.getCurrentUser();
if (loginUser.getAuthenticationMethod() == UserGroupInformation.AuthenticationMethod.KERBEROS
&& useTicketCache && !loginUser.hasKerberosCredentials()) {
LOG.error("Hadoop security with Kerberos is enabled but the login user does not have Kerberos credentials");
throw new RuntimeException("Hadoop security with Kerberos is enabled but the login user " +
"does not have Kerberos credentials");
}
} isReadyForDeployment(clusterSpecification); // ------------------ Check if the specified queue exists -------------------- checkYarnQueues(yarnClient); // ------------------ Add dynamic properties to local flinkConfiguraton ------
Map<String, String> dynProperties = getDynamicProperties(dynamicPropertiesEncoded);
for (Map.Entry<String, String> dynProperty : dynProperties.entrySet()) {
flinkConfiguration.setString(dynProperty.getKey(), dynProperty.getValue());
} // ------------------ Check if the YARN ClusterClient has the requested resources -------------- // Create application via yarnClient
final YarnClientApplication yarnApplication = yarnClient.createApplication();
final GetNewApplicationResponse appResponse = yarnApplication.getNewApplicationResponse(); Resource maxRes = appResponse.getMaximumResourceCapability(); final ClusterResourceDescription freeClusterMem;
try {
freeClusterMem = getCurrentFreeClusterResources(yarnClient);
} catch (YarnException | IOException e) {
failSessionDuringDeployment(yarnClient, yarnApplication);
throw new YarnDeploymentException("Could not retrieve information about free cluster resources.", e);
} final int yarnMinAllocationMB = yarnConfiguration.getInt(yarnConfiguration.RM_SCHEDULER_MINIMUM_ALLOCATION_MB, 0); final ClusterSpecification validClusterSpecification;
try {
validClusterSpecification = validateClusterResources(
clusterSpecification,
yarnMinAllocationMB,
maxRes,
freeClusterMem);
} catch (YarnDeploymentException yde) {
failSessionDuringDeployment(yarnClient, yarnApplication);
throw yde;
} LOG.info("Cluster specification: {}", validClusterSpecification); final ClusterEntrypoint.ExecutionMode executionMode = detached ?
ClusterEntrypoint.ExecutionMode.DETACHED
: ClusterEntrypoint.ExecutionMode.NORMAL; flinkConfiguration.setString(ClusterEntrypoint.EXECUTION_MODE, executionMode.toString()); ApplicationReport report = startAppMaster(
flinkConfiguration,
applicationName,
yarnClusterEntrypoint,
jobGraph,
yarnClient,
yarnApplication,
clusterSpecification); String host = report.getHost();
int port = report.getRpcPort(); // Correctly initialize the Flink config
flinkConfiguration.setString(JobManagerOptions.ADDRESS, host);
flinkConfiguration.setInteger(JobManagerOptions.PORT, port); flinkConfiguration.setString(RestOptions.ADDRESS, host);
flinkConfiguration.setInteger(RestOptions.PORT, port); // the Flink cluster is deployed in YARN. Represent cluster
return createYarnClusterClient(
this,
clusterSpecification.getNumberTaskManagers(),
clusterSpecification.getSlotsPerTaskManager(),
report,
flinkConfiguration,
true);
}

deployInternal方法开头对yarn集群的可用内存,queue等进行检查后申请了一个application,并调用startAppMaster声明了AM的启动类:YarnApplicationMasterRunner

public ApplicationReport startAppMaster(
Configuration configuration,
String applicationName,
String yarnClusterEntrypoint,
JobGraph jobGraph,
YarnClient yarnClient,
YarnClientApplication yarnApplication,
ClusterSpecification clusterSpecification) throws Exception {
..... setApplicationTags(appContext); // add a hook to clean up in case deployment fails
Thread deploymentFailureHook = new DeploymentFailureHook(yarnClient, yarnApplication, yarnFilesDir);
Runtime.getRuntime().addShutdownHook(deploymentFailureHook);
LOG.info("Submitting application master " + appId);
yarnClient.submitApplication(appContext); LOG.info("Waiting for the cluster to be allocated");
final long startTime = System.currentTimeMillis();
ApplicationReport report; }

YarnApplicationMasterRunner会在yarn集群上作为appmaster与resourcemanager通信申请对应的Taskmanagercontainer服务,启动jobmanager服务和webui服务等

    protected int runApplicationMaster(Configuration config) {
......
......
webMonitor = BootstrapTools.startWebMonitorIfConfigured(
config,
highAvailabilityServices,
new AkkaJobManagerRetriever(actorSystem, webMonitorTimeout, 10, Time.milliseconds(50L)),
new AkkaQueryServiceRetriever(actorSystem, webMonitorTimeout),
webMonitorTimeout,
new ScheduledExecutorServiceAdapter(futureExecutor),
LOG); metricRegistry = new MetricRegistryImpl(
MetricRegistryConfiguration.fromConfiguration(config)); metricRegistry.startQueryService(actorSystem, null); // 2: the JobManager
LOG.debug("Starting JobManager actor"); // we start the JobManager with its standard name
ActorRef jobManager = JobManager.startJobManagerActors(
config,
actorSystem,
futureExecutor,
ioExecutor,
highAvailabilityServices,
metricRegistry,
webMonitor == null ? Option.empty() : Option.apply(webMonitor.getRestAddress()),
new Some<>(JobMaster.JOB_MANAGER_NAME),
Option.<String>empty(),
getJobManagerClass(),
getArchivistClass())._1(); final String webMonitorURL = webMonitor == null ? null : webMonitor.getRestAddress(); // 3: Flink's Yarn ResourceManager
LOG.debug("Starting YARN Flink Resource Manager"); Props resourceMasterProps = YarnFlinkResourceManager.createActorProps(
getResourceManagerClass(),
config,
yarnConfig,
highAvailabilityServices.getJobManagerLeaderRetriever(HighAvailabilityServices.DEFAULT_JOB_ID),
appMasterHostname,
webMonitorURL,
taskManagerParameters,
taskManagerContext,
numInitialTaskManagers,
LOG); ActorRef resourceMaster = actorSystem.actorOf(resourceMasterProps);

另一方面,flink客户端在提交完集群后从runprogram()方法进入executeProgram();

    protected void executeProgram(PackagedProgram program, ClusterClient<?> client, int parallelism) throws ProgramMissingJobException, ProgramInvocationException {
logAndSysout("Starting execution of program"); final JobSubmissionResult result = client.run(program, parallelism); if (null == result) {
throw new ProgramMissingJobException("No JobSubmissionResult returned, please make sure you called " +
"ExecutionEnvironment.execute()");
} if (result.isJobExecutionResult()) {
logAndSysout("Program execution finished");
JobExecutionResult execResult = result.getJobExecutionResult();
System.out.println("Job with JobID " + execResult.getJobID() + " has finished.");
System.out.println("Job Runtime: " + execResult.getNetRuntime() + " ms");
Map<String, Object> accumulatorsResult = execResult.getAllAccumulatorResults();
if (accumulatorsResult.size() > 0) {
System.out.println("Accumulator Results: ");
System.out.println(AccumulatorHelper.getResultsFormatted(accumulatorsResult));
}
} else {
logAndSysout("Job has been submitted with JobID " + result.getJobID());
}
}

代码从ClusterClient.run()->prog.invokeInteractiveModeForExecution()开始真正进入用户flink job的main方法。

main方法中,代码最后的env.execute() 会把生成job的执行plan并返回对应的DetachedEnvironment对象。

方法调用链路为DetachedEnvironment.finalizeExecute()->ClusterClient.run()->YarnClusterClient.submitJob->ClusterClient.runDetached();

    /**
* Submits a JobGraph detached.
* @param jobGraph The JobGraph
* @param classLoader User code class loader to deserialize the results and errors (may contain custom classes).
* @return JobSubmissionResult
* @throws ProgramInvocationException
*/
public JobSubmissionResult runDetached(JobGraph jobGraph, ClassLoader classLoader) throws ProgramInvocationException { waitForClusterToBeReady(); final ActorGateway jobManagerGateway;
try {
jobManagerGateway = getJobManagerGateway();
} catch (Exception e) {
throw new ProgramInvocationException("Failed to retrieve the JobManager gateway.", e);
} try {
logAndSysout("Submitting Job with JobID: " + jobGraph.getJobID() + ". Returning after job submission.");
JobClient.submitJobDetached(
new AkkaJobManagerGateway(jobManagerGateway),
flinkConfig,
jobGraph,
Time.milliseconds(timeout.toMillis()),
classLoader);
return new JobSubmissionResult(jobGraph.getJobID());
} catch (JobExecutionException e) {
throw new ProgramInvocationException("The program execution failed: " + e.getMessage(), e);
}
}
    @Override
public JobSubmissionResult submitJob(JobGraph jobGraph, ClassLoader classLoader) throws ProgramInvocationException {
if (isDetached()) {
if (newlyCreatedCluster) {
stopAfterJob(jobGraph.getJobID());
}
LOG.info("super.runDetached");
return super.runDetached(jobGraph, classLoader);
} else {
LOG.info("super.run");
return super.run(jobGraph, classLoader);
}
}

最后,客户端连接到前文对应的jobmanager服务并把flink job grafaph提交给yarn上已经申请好的flink集群。

结论:flink on yarn的single job模式提交作业的逻辑为flink客户端首先申请一个yarn集群的application,等待集群成功部署后再联系jobmanager并把job提交到集群上面。这个模式的优点是每个

flink job有一个独立的集群便于资源规划和管理,缺点是经过验证在am挂掉后yarn只能把原来的集群重启回来但是无法恢复flink jobgraph的行为,所以需要额外配置ha信息。

flink on yarn部分源码解析的更多相关文章

  1. flink on yarn部分源码解析 (FLIP-6 new mode)

    我们在https://www.cnblogs.com/dongxiao-yang/p/9403427.html文章里分析了flink提交single job到yarn集群上的代码,flink在1.5版 ...

  2. [源码解析] 从TimeoutException看Flink的心跳机制

    [源码解析] 从TimeoutException看Flink的心跳机制 目录 [源码解析] 从TimeoutException看Flink的心跳机制 0x00 摘要 0x01 缘由 0x02 背景概念 ...

  3. [源码解析] 当 Java Stream 遇见 Flink

    [源码解析] 当 Java Stream 遇见 Flink 目录 [源码解析] 当 Java Stream 遇见 Flink 0x00 摘要 0x01 领域 1.1 Flink 1.2 Java St ...

  4. [源码解析] Flink的Slot究竟是什么?(1)

    [源码解析] Flink的Slot究竟是什么?(1) 目录 [源码解析] Flink的Slot究竟是什么?(1) 0x00 摘要 0x01 概述 & 问题 1.1 Fllink工作原理 1.2 ...

  5. [源码解析] Flink的Slot究竟是什么?(2)

    [源码解析] Flink 的slot究竟是什么?(2) 目录 [源码解析] Flink 的slot究竟是什么?(2) 0x00 摘要 0x01 前文回顾 0x02 注册/更新Slot 2.1 Task ...

  6. 《Flink 源码解析》—— 源码编译运行

    更新一篇知识星球里面的源码分析文章,去年写的,周末自己录了个视频,大家看下效果好吗?如果好的话,后面补录发在知识星球里面的其他源码解析文章. 前言 之前自己本地 clone 了 Flink 的源码,编 ...

  7. Flink 源码解析 —— 源码编译运行

    更新一篇知识星球里面的源码分析文章,去年写的,周末自己录了个视频,大家看下效果好吗?如果好的话,后面补录发在知识星球里面的其他源码解析文章. 前言 之前自己本地 clone 了 Flink 的源码,编 ...

  8. Flink 源码解析 —— 如何获取 ExecutionGraph ?

    https://t.zsxq.com/UnA2jIi 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac 上搭建 Flink 1.6. ...

  9. Flink 源码解析 —— 深度解析 Flink 是如何管理好内存的?

    前言 如今,许多用于分析大型数据集的开源系统都是用 Java 或者是基于 JVM 的编程语言实现的.最着名的例子是 Apache Hadoop,还有较新的框架,如 Apache Spark.Apach ...

随机推荐

  1. Atlassian发布JIRA项目组合管理解决方案

    在其年度用户峰会上,开发和协作软件供应商Atlassian发布了JIRA Portfolio,JIRA Portfolio是JIRA的一个附加组件"可以提供简单准确的视图用于计划和管理跨团队 ...

  2. jQuery:validate设置样式

    jquery.validate.js插件里面的样式设置: ... errorClass: "error",validClass: "valid", ... &l ...

  3. ylbtech-LanguageSamples-Pinvoke(平台调用)

    ylbtech-Microsoft-CSharpSamples:ylbtech-LanguageSamples-Pinvoke(平台调用) 1.A,示例(Sample) 返回顶部 “平台调用”示例 本 ...

  4. HTTP代理神器Fiddler

    HTTP代理神器Fiddler Fiddler是一款强大Web调试工具,它能记录所有客户端和服务器的HTTP请求. Fiddler启动的时候,默认IE的代理设为了127.0.0.1:8888,而其他浏 ...

  5. PowerShell中的一个switch的例子

    在这个例子中, 应该注意 Switch语句里对数字范围条件的使用 break的使用 字符串的拼接 数组的声明   ) foreach ($element in $array) { switch($el ...

  6. Ajax的简单总结

    1. Ajax的优势和不足 1.1 Ajax的优势 1. 不需要插件支持 Ajax不需要任何浏览器插件,就可以被绝大多数主流浏览器所支持,用户只需要允许JavaScript在浏览器上执行即可. 2. ...

  7. 关于configure和Makefile

    http://blog.csdn.net/lltaoyy/article/details/7615833 转篇文章,讲的不是很清楚,再附上几个资料连接,来自http://www.linuxdw.com ...

  8. CDN新应用和客户

    目前的CDN配置服务主要应用于证券.金融保险.ISP.ICP.网上交易.门户网站.大中型公司.网络教学等领域.另外在行业专网.互联网中都可以用到,甚至可以对局域网进行网络优化.利用CDN,这些网站无需 ...

  9. 运行时权限请求框架easypermissions

    前言 之前使用过AndPermission权限申请库,当开发者执行有权限的代码发生异常时,AndPermission会抓到异常并回调到失败中,这里要注意的是会抓到任何异常,不仅仅是没有权限时的异常. ...

  10. Net 服务命令行参考之一

    转自:http://blog.sina.com.cn/s/blog_55035e9501015p05.html ----------------------------------最实用高效的网络管理 ...