Codeforces 550C —— Divisibility by Eight——————【枚举 || dp】
2 seconds
256 megabytes
standard input
standard output
You are given a non-negative integer n, its decimal representation consists of at most 100 digits and doesn't contain leading zeroes.
Your task is to determine if it is possible in this case to remove some of the digits (possibly not remove any digit at all) so that the result contains at least one digit, forms a non-negative integer, doesn't have leading zeroes and is divisible by 8. After the removing, it is forbidden to rearrange the digits.
If a solution exists, you should print it.
The single line of the input contains a non-negative integer n. The representation of number n doesn't contain any leading zeroes and its length doesn't exceed 100 digits.
Print "NO" (without quotes), if there is no such way to remove some digits from number n.
Otherwise, print "YES" in the first line and the resulting number after removing digits from number n in the second line. The printed number must be divisible by 8.
If there are multiple possible answers, you may print any of them.
3454
YES
344
10
YES
0
111111
NO 题目大意:给你一个数字字符串,没有前导零。问你是否可以挑出几个数字(相对顺序不变)组成一个新的数字,要求能被8整除。如果存在,输出“YES”并且把该数输出。否则,输出“NO”。 解题思路:我们可以知道,10^3的倍数都可以被8整除。所以我们只要我们枚举判断最多3位数时能否被8整除即可。所以就是O(len^3)。
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<string>
#include<iostream>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
using namespace std;
typedef long long LL;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson rt*2+1,mid+1,R
#pragma comment(linker, "/STACK:102400000,102400000")
const int maxn = 1e5 + 300;
const int INF = 0x3f3f3f3f;
typedef long long LL;
typedef unsigned long long ULL;
char s[200];
int main(){
while(scanf("%s",s+1)!=EOF){
int len = strlen(s+1);
int num , num1, num2, ans;
int flag = 0;
for(int i = 1; i <= len; i++){
if(flag) break;
num = s[i] - '0';
if(num % 8 == 0){
ans = num;
flag = 1; break;
}
for(int j = i+1; j <= len; j++){
if(flag) break;
num1 = num * 10;
num1 = num1 + s[j] - '0';
if(num1 % 8 == 0){
ans = num1;
flag = 1; break;
}
for(int k = j+1; k <= len; k++){
num2 = num1 * 10;
num2 = num2 + s[k] - '0';
if(num2 % 8 == 0){
ans = num2;
flag = 1;
break;
}
}
}
}
if(flag){
puts("YES"); printf("%d\n",ans);
}else{
puts("NO");
}
}
return 0;
}
题解中还有一种更好的复杂度。但是所给的dp转移方程不太明白,有机会再看看。
http://codeforces.com/blog/entry/18329
Codeforces 550C —— Divisibility by Eight——————【枚举 || dp】的更多相关文章
- [Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT)
[Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT) 题面 给出一个\(n\)个点\(m\)条边的有向图(可能有环),走每条边需要支付一个价格\(c_i ...
- [Codeforces 865C]Gotta Go Fast(期望dp+二分答案)
[Codeforces 865C]Gotta Go Fast(期望dp+二分答案) 题面 一个游戏一共有n个关卡,对于第i关,用a[i]时间通过的概率为p[i],用b[i]通过的时间为1-p[i],每 ...
- [CodeForces - 1225E]Rock Is Push 【dp】【前缀和】
[CodeForces - 1225E]Rock Is Push [dp][前缀和] 标签:题解 codeforces题解 dp 前缀和 题目描述 Time limit 2000 ms Memory ...
- codeforces 629C Famil Door and Brackets (dp + 枚举)
题目链接: codeforces 629C Famil Door and Brackets 题目描述: 给出完整的括号序列长度n,现在给出一个序列s长度为m.枚举串p,q,使得p+s+q是合法的括号串 ...
- Codeforces Round #191 (Div. 2) A. Flipping Game【*枚举/DP/每次操作可将区间[i,j](1=<i<=j<=n)内牌的状态翻转(即0变1,1变0),求一次翻转操作后,1的个数尽量多】
A. Flipping Game time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces 834E The Bakery【枚举+数位dp】
E. Ever-Hungry Krakozyabra time limit per test:1 second memory limit per test:256 megabytes input:st ...
- codeforces Diagrams & Tableaux1 (状压DP)
http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...
- Codeforces Round #543 (Div. 2) F dp + 二分 + 字符串哈希
https://codeforces.com/contest/1121/problem/F 题意 给你一个有n(<=5000)个字符的串,有两种压缩字符的方法: 1. 压缩单一字符,代价为a 2 ...
- Educational Codeforces Round 1 E. Chocolate Bar dp
题目链接:http://codeforces.com/contest/598/problem/E E. Chocolate Bar time limit per test 2 seconds memo ...
随机推荐
- c# 变量交换
C# 变量交换 变量交换的方法: 1.借助第三个变量: class Program { static void Main(string[] args) { Exchage(,); } /// < ...
- IE6 IE7 IE8 FF兼容符号
2.区别IE8.IE9 一般来说,我们写的结构比较好的时候,IE8/9下是没区别的.所以可能很少人关注只有IE8或只有IE9才识别的css hack. 因为IE8及以下版本是不支持CSS3的,但是我们 ...
- linux kvm虚拟机安装
1.上传ISO文件,这里采用OEL5.8x64iso 2.开始安装OEL5.8 (1)raw格式磁盘 virt- --vcpus= --disk path=/data/test02.img,size= ...
- 15、xtrabackup 全量备份
xtrabackup 全量备份与恢复 安装 yum install https://www.percona.com/downloads/XtraBackup/Percona-XtraBackup-2. ...
- android开发如何获取res/raw和assets文件夹的路径
---恢复内容开始--- android开发如何获取res/raw和assets文件夹的路径,主要分为两种情况: 1.如果你只是拷贝动作,那么你只需要得到res/raw和assets文件输入流就可以, ...
- 性能测试—JMeter 常用元件(二)
性能测试—JMeter 常用元件(二) <零成本web性能测试>第三章 Web性能测试脚本录制与开发中JMeter常用测试元件 测试计划描述了JMeter运行时将会执行的一系列步骤,一个完 ...
- Deeplearning学习
Deeplearning 概念 Deep Learning: 观点: 认为AI是最新的电力,大约在一百年前,我们社会的电气化改变了每个主要行业,从交通运输行业到制造业.医疗保健.通讯等方面,我认为 ...
- 手动博客重定向 https://www.cnblogs.com/kelthuzadx/
https://www.cnblogs.com/kelthuzadx/ 博客狂魔又㕛叒换地址了
- Saiku2.6 Saiku315 链接SQL的JDBC字符串
Saiku26 type=OLAP name=CloudConn driver=mondrian.olap4j.MondrianOlap4jDriver location=jdbc:mondrian: ...
- Object类和包装类的一些方法
一.instanceof关键字的使用: a instanceof A:判断对象a是否是类A的实例.如果是,返回true:如果不是,返回false. 使用场景:为了避免在向下转型时出现ClassCast ...