首先想过n^3的组合方法,即f(i,j,k)=f(i-1,j,k)*(i-2)+f(i-1,j-1,k)+f(i-1,j,k-1),肯定搞不定

然后想了好久没有效果,就去逛大神博客了,结果发现需要用到第一类stirling数

第一类stirling数S(n,m)表示的是n个数排成m个非空环排列的数目

每个环排列中必然有一个是可以看见的,然后再对这m个环求组合数

不难理解,但是很难想到

#include <stdio.h>
#include <string.h>
#define mod 1000000007
#define LL long long int C[2050][2050];
LL S[2050][2050]; void init()
{
memset(C,0,sizeof(C));
memset(S,0,sizeof(S));
C[0][0]=1;
for(int i=1;i<=2000;i++)
{
C[i][0]=1;
for(int j=1;j<=2000;j++)
{
C[i][j]=C[i-1][j-1]+C[i-1][j];
C[i][j]%=mod;
}
}
for(int i=1;i<=2000;i++)
S[i][i]=1;
for(int i=1;i<=2000;i++)
S[i][0]=0;
for(int i=1;i<=2000;i++)
{
for(int j=1;j<i;j++)
{
S[i][j]=(i-1)*S[i-1][j]+S[i-1][j-1];
S[i][j]%=mod;
}
}
} int main()
{
int T,n,f,b;
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&f,&b);
LL ans=S[n-1][f+b-2]*C[f+b-2][f-1];
printf("%I64d\n",ans%mod);
}
return 0;
}

HDU 4372 - Count the Buildings(组合计数)的更多相关文章

  1. HDU 4372 Count the Buildings

    Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  2. HDU 4372 Count the Buildings:第一类Stirling数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4372 题意: 有n栋高楼横着排成一排,各自的高度为1到n的一个排列. 从左边看可以看到f栋楼,从右边看 ...

  3. hdu 4372 Count the Buildings —— 思路+第一类斯特林数

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4372 首先,最高的会被看见: 然后考虑剩下 \( x+y-2 \) 个被看见的,每个带了一群被它挡住的楼, ...

  4. HDU 4372 Count the Buildings [第一类斯特林数]

    有n(<=2000)栋楼排成一排,高度恰好是1至n且两两不同.现在从左侧看能看到f栋,从右边看能看到b栋,问有多少种可能方案. T组数据, (T<=100000) 自己只想出了用DP搞 发 ...

  5. HDU 4372 Count the Buildings——第一类斯特林数

    题目大意:n幢楼,从左边能看见f幢楼,右边能看见b幢楼 楼高是1~n的排列. 问楼的可能情况 把握看到楼的本质! 最高的一定能看见! 计数问题要向组合数学或者dp靠拢.但是这个题询问又很多,难以dp ...

  6. hdu 4372 Count the Buildings 轮换斯特林数

    题目大意 n栋楼有n个不同的高度 现在限制从前面看有F个点,后面看有B个点 分析 最高那栋楼哪都可以看到 剩下的可以最高那栋楼前面分出F-1个组 后面分出B-1个组 每个组的权值定义为组内最高楼的高度 ...

  7. HDU 4372 Count the Buildings 组合数学

    题意:有n个点上可能有楼房,从前面可以看到x栋楼,从后面可以看到y栋,问楼的位置有多少种可能. 印象中好像做过这个题,

  8. HDU.4903.The only survival(组合 计数)

    题目链接 惊了 \(Description\) 给定\(n,k,L\),表示,有一张\(n\)个点的无向完全图,每条边的边权在\([1,L]\)之间.求有多少张无向完全图满足,\(1\)到\(n\)的 ...

  9. HDU 5901 Count primes 大素数计数

    题意:计算1~N间素数的个数(N<=1e11) 题解:题目要求很简单,作为论文题,模板有两种 \(O(n^\frac{3}{4} )\),另一种lehmer\(O(n^\frac{2}{3})\ ...

随机推荐

  1. 最佳 WordPress 静态缓存插件 WP Super Cache 安装和使用(转)

    WP Super Cache 是 WordPress 官方开发人员 Donncha开发,是当前最高效也是最灵活的 WordPress 静态缓存插件.它把整个网页直接生成 HTML 文件,这样 Web ...

  2. java InputStream读取数据问题

    原文 1. 关于InputStream.read()     在从数据流里读取数据时,为图简单,经常用InputStream.read()方法.这个方法是从流里每次只读取读取一个字节,效率会非常低.  ...

  3. 【剑指offer】面试题 29. 顺时针打印矩阵

    面试题 29. 顺时针打印矩阵 题目描述 题目:输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

  4. 【JavaScript】setinterval和setTimeout的区别

    计时器setTimeout()与setInterval()是原生JS很重要且用处很多的两个方法, 但很多人一直误以为是相同的功能: 间隔时间重复执行传入的句柄函数. 但实际上, 并非如此, 既然JS给 ...

  5. POJ 2031 Building a Space Station【最小生成树+简单计算几何】

    You are a member of the space station engineering team, and are assigned a task in the construction ...

  6. NBUT 1218 You are my brother

    $dfs$. 记录一下每一个节点的深度就可以了. #include<cstdio> #include<cstring> #include<cmath> #inclu ...

  7. Java的锁研究

    Lock和synchronized     JDK1.5以后,在锁机制方面引入了新的锁-Lock,在网上的说法都比较笼统,结合网上的信息和我的理解这里做个总结.     java现有的锁机制有两种实现 ...

  8. BZOJ 1828 [Usaco2010 Mar]balloc 农场分配(贪心+线段树)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1828 [题目大意] 现在有一些线段[l,r]的需求需要满足,i位置最多允许a[i]条线 ...

  9. python基础之面向过程编程,模块

    面向过程编程 面向过程的核心是过程,指的是解决问题的步骤,即先干什么再干什么,就好像设计一条流水线. 优点:复杂的问题流程化,进而简单化 缺点:可扩展性差,修改流水线的任意一个阶段,都会牵一发而动全身 ...

  10. [转]为什么匿名内部类参数必须为final类型

    1)  从程序设计语言的理论上:局部内部类(即:定义在方法中的内部类),由于本身就是在方法内部(可出现在形式参数定义处或者方法体处),因而访问方法中的局部变量(形式参数或局部变量)是天经地义的.是很自 ...