The more, The Better

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4442    Accepted Submission(s): 2639

Problem Description
ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物。但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先攻克其他某一个特定的城堡。你能帮ACboy算出要获得尽量多的宝物应该攻克哪M个城堡吗?
 
Input
每个测试实例首先包括2个整数,N,M.(1 <= M <= N <= 200);在接下来的N行里,每行包括2个整数,a,b. 在第 i 行,a 代表要攻克第 i 个城堡必须先攻克第 a 个城堡,如果 a = 0 则代表可以直接攻克第 i 个城堡。b 代表第 i 个城堡的宝物数量, b >= 0。当N = 0, M = 0输入结束。
 
Output
对于每个测试实例,输出一个整数,代表ACboy攻克M个城堡所获得的最多宝物的数量。
 
Sample Input
3 2
0 1
0 2
0 3
7 4
2 2
0 1
0 4
2 1
7 1
7 6
2 2
0 0
Sample Output
5
13
 
这是一道经典的树形DP,去年去凤凰之前就碰到过这道题目了。但是没有看懂思路。
额额,居然拖到现在.
 
思路:
     一看就感觉是背包,还加上了限定个数的条件 M 。
     而且,存在依赖关系。装子节点的前提是,把其父亲节点也要装进去才行。
    
     这样的情况,感觉挺难的。
1.   dp[ k ][ j ] 代表  对于 k 节点,收集了 j 个 其子节点的最大价值。
     是否,要采取对 叶子节点  和 非叶子节点 来进行分类讨论呢?
     不是的,更加题意的依赖关系。
     我们能得到一个共性的初始化。
     dp[ k ][ 0 ]=0;
     dp[ k ][ 1 ]=val[k];//这个是要的,只有把自己装进去了,才能装你子节点呀。
   递推公式: 
   dp[ k ][ j ] = max(  dp[ k ][ j ] , dp[ dp[k].next[i] ][ j-x ] + dp[ k ][ x ] );
 
     dp[ dp[k].next[i] ][ j-x ] 表示在 k 节点 的 某个子节点里 收集 j-x 个节点。
     dp[ k ][ x ]               表示在 k 节点 里 收集 x 个节点。
 
 
2.   寻找根节点,我们发现,有许多的森林。那么我用0来做根节点。自然 m++;        
   
3.   最后一个问题是如何书写这个背包了。
     for( i=1; i<= f[k].num; i++)//枚举多有少的节点。
    {
        t=f[k].next[i];
        dfs(t); //搜索,实现递归。
              for(j=m;j>=2;j--)// 不会表达。囧... 枚举该节点能收集的个数。
          {
              for(s=1;s<=j;s++)//枚举其该儿子节点 t 收集的个数。
                {
                  dp[k][j]=Max(dp[k][j],dp[t][j-s]+dp[k][s]);
                }
          }
      }
 
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
using namespace std;
int n,m;
struct node
{
int next[];
int num;
}f[];
int dp[][]; int Max(int x,int y)
{
return x>y? x:y;
} void dfs(int k)
{
int i,j,t,s;
dp[k][]=;
for(i=;i<=f[k].num;i++)//枚举每一个点
{
t=f[k].next[i];
dfs(t);
for(j=m;j>=;j--)//枚举
{
for(s=;s<=j;s++)
{
dp[k][j]=Max(dp[k][j],dp[t][j-s]+dp[k][s]);
}
}
}
} int main()
{
int i,x;
while(scanf("%d%d",&n,&m)>)
{
if(n==&&m==)break; memset(dp,,sizeof(dp));
for(i=;i<=;i++) f[i].num=; for(i=;i<=n;i++)
{
scanf("%d%d",&x,&dp[i][]);
f[x].num++;
f[x].next[f[x].num]=i;
}
m++;
dfs();
printf("%d\n",dp[][m]);
}
return ;
}

/*
如何保证 子节点 装进去的前提是父亲节点被装进去了。
是更具dp[i][1]=val[i];

在推导的过程中,虽然刚开始容量为m的每个格子不是都有val[i]的值。
但是放入多少个,例如n,那么对于在容量为n的格子里,就一定会有val[i]的存在

*/

 

HDU 1561 The more, The Better 经典树形DP的更多相关文章

  1. HDU 1561 The more, The Better【树形DP/有依赖的分组背包】

    ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物.但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先 ...

  2. HDU 1561 The more, The Better(树形dp之树形01背包)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1561 The more, The Better Time Limit: 6000/2000 MS (J ...

  3. HDU 1561 The more, The Better(树形DP+01背包)

    The more, The Better Time Limit : 6000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other ...

  4. HDU 1561 The more, The Better (树形DP,常规)

    题意:给一个森林,n个节点,每个点有点权,问若从中刚好选择m个点(选择某点之前必须先选择了其父亲),使得这m个点权之和最大为多少? 思路: 比较常规.就是DFS一次,枚举在子树中可能选择的k个点(注意 ...

  5. HDU 1561 The more, The Better(树形背包)

    The more, The Better Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  6. hdu 1520 Anniversary party(第一道树形dp)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1520 Anniversary party Time Limit: 2000/1000 MS (Java ...

  7. HDU 4126 Genghis Khan the Conqueror 最小生成树+树形dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4126 Genghis Khan the Conqueror Time Limit: 10000/50 ...

  8. hdu 5909 Tree Cutting——点分治(树形DP转为序列DP)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5909 点分治的话,每次要做一次树形DP:但时间应该是 siz*m2 的.可以用 FWT 变成 siz*ml ...

  9. bzoj 2159 Crash 的文明世界 && hdu 4625 JZPTREE ——第二类斯特林数+树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 学习材料:https://blog.csdn.net/litble/article/d ...

随机推荐

  1. BZOJ3531-[Sdoi2014]旅行(树剖+线段树动态开点)

    传送门 完了今天才知道原来线段树的动态开点和主席树是不一样的啊 我们先考虑没有宗教信仰的限制,那么就是一个很明显的树剖+线段树,路径查询最大值以及路径和 然后有了宗教信仰的限制该怎么做呢? 先考虑暴力 ...

  2. [AIR] 与本地进程(应用程序)进行通讯

    毫不夸张的说,此功能可以将Windows命令行程序(cmd.exe)通过AIR应用封装起来,并指挥它做任何你想做的事情 AIR2.0及以上与本地进程的交互主要体现在以下几方面: 启动进程并提供初始参数 ...

  3. click事件和jquery选项卡

    一. click事件 实现效果是点击切换按钮,可以重复的切换背景色 <!DOCTYPE html> <html lang="en"> <head> ...

  4. java里面的标识符、关键字和类型

    1. 注释  Java中有三种注释:   (1) // -单行注释,注释从“//”开始,终止于行尾:   (2)  -多行注释,注释从““结束:   (3)  -是Java特有的doc注释,这种注释主 ...

  5. 2018年1月17日总结 css3里transition 和animation 区别

    transition 和animation两个CSS3属性经常被用到实际项目中,想把它整理出来. 1.先介绍transition >>>>>  a. 在做项目中经常会遇见 ...

  6. [CQOI2015]标识设计

    Luogu3170 128MB过不去 LOJ2099 256MB能卡过 BZOJ3934 512MB怎么都过的去 求在\(30*30\)的方格上放\(3\)个\(L\)的方案 , 有障碍 拓展这条路的 ...

  7. mvn修改版本号命令

    mvn -DnewVersion=1.0.0 -DgenerateBackupPoms=false versions:set

  8. laravel5.8的使用

    首先,确定电脑已经安装了composer.最好是全局安装 然后打开phpstorm的控制台: composer create-project --prefer-dist laravel/laravel ...

  9. storm(5)-分布式单词计数例子

    例子需求: spout:向后端发送{"sentence":"my dog has fleas"}.一般要连数据源,此处简化写死了. 语句分割bolt(Split ...

  10. eureka 和zookeeper 区别 优势

    作为服务注册中心,Eureka比Zookeeper好在哪里 著名的CAP理论指出,一个分布式系统不可能同时满足C(一致性).A(可用性)和P(分区容错性).由于分区容错性在是分布式系统中必须要保证的, ...