| Data Wrangling |

# Sort all the data into one file

files = ['BeijingPM20100101_20151231.csv','ChengduPM20100101_20151231.csv','GuangzhouPM20100101_20151231.csv','ShanghaiPM20100101_20151231.csv','ShenyangPM20100101_20151231.csv']
out_columns = ['No', 'year', 'month', 'day', 'hour', 'season', 'PM_US Post']

# Create a void dataframe

df_all_cities = pd.DataFrame()

# Iterate to write diffrent files

for inx, val in enumerate(files):
df = pd.read_csv(val)
df = df[out_columns]
# create a city column
df['city'] = val.split('P')[0]
# map season
df['season'] = df['season'].map({1:'Spring', 2:'Summer', 3:'Autumn', 4: 'Winter'})
# append each file and merge all files into one
df_all_cities = df_all_cities.append(df)

# replace the space in variable names with '_'

df_all_cities.columns = [c.replace(' ', '_') for c in df_all_cities.columns]

# Assignment: 

# print the length of data
print("The number of row in this dataset is ",len(Beijing_data.index))
# calculating the number of records in column "PM_Dongsi"
print("There number of missing data records in PM_Dongsi is: ",len(Beijing_data.index) - len(Beijing_data['PM_Dongsi'].dropna()))
print("There number of missing data records in PM_Dongsihuan is: ",len(Beijing_data.index) - len(Beijing_data['PM_Dongsihuan'].dropna()))
print("There number of missing data records in PM_Nongzhanguan is: ",len(Beijing_data.index) - len(Beijing_data['PM_Nongzhanguan'].dropna()))
print("There number of missing data records in DEWP is: ",len(Beijing_data.index) - len(Beijing_data['DEWP'].dropna()))
print("There number of missing data records in HUMI is: ",len(Beijing_data.index) - len(Beijing_data['HUMI'].dropna()))
print("There number of missing data records in PRES is: ",len(Beijing_data.index) - len(Beijing_data['PRES'].dropna()))
print("There number of missing data records in TEMP is: ",len(Beijing_data.index) - len(Beijing_data['TEMP'].dropna()))
print("There number of missing data records in cbwd is: ",len(Beijing_data.index) - len(Beijing_data['cbwd'].dropna()))
print("There number of missing data records in Iws is: ",len(Beijing_data.index) - len(Beijing_data['Iws'].dropna()))
print("There number of missing data records in precipitation is: ",len(Beijing_data.index) - len(Beijing_data['precipitation'].dropna()))
print("There number of missing data records in Iprec is: ",len(Beijing_data.index) - len(Beijing_data['Iprec'].dropna()))

Learning notes | Data Analysis: 1.2 data wrangling的更多相关文章

  1. Learning notes | Data Analysis: 1.1 data evaluation

    | Data Evaluation | - Use Shift + Enter or Shift + Return to run the upper box so as to make it disp ...

  2. How to use data analysis for machine learning (example, part 1)

    In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite ...

  3. Learning Spark: Lightning-Fast Big Data Analysis 中文翻译

    Learning Spark: Lightning-Fast Big Data Analysis 中文翻译行为纯属个人对于Spark的兴趣,仅供学习. 如果我的翻译行为侵犯您的版权,请您告知,我将停止 ...

  4. 用pandas进行数据清洗(二)(Data Analysis Pandas Data Munging/Wrangling)

    在<用pandas进行数据清洗(一)(Data Analysis Pandas Data Munging/Wrangling)>中,我们介绍了数据清洗经常用到的一些pandas命令. 接下 ...

  5. An Introduction to Stock Market Data Analysis with R (Part 1)

    Around September of 2016 I wrote two articles on using Python for accessing, visualizing, and evalua ...

  6. 学习笔记之Python for Data Analysis

    Python for Data Analysis, 2nd Edition https://www.safaribooksonline.com/library/view/python-for-data ...

  7. 《利用Python进行数据分析: Python for Data Analysis 》学习随笔

    NoteBook of <Data Analysis with Python> 3.IPython基础 Tab自动补齐 变量名 变量方法 路径 解释 ?解释, ??显示函数源码 ?搜索命名 ...

  8. Python for Data Analysis

    Data Analysis with Python ch02 一些有趣的数据分析结果 Male描述的是美国新生儿男孩纸的名字的最后一个字母的分布 Female描述的是美国新生儿女孩纸的名字的最后一个字 ...

  9. 深入浅出数据分析 Head First Data Analysis Code 数据与代码

    <深入浅出数据分析>英文名为Head First Data Analysis Code, 这本书中提供了学习使用的数据和程序,原书链接由于某些原因不 能打开,这里在提供一个下载的链接.去下 ...

随机推荐

  1. 使用MongoDB血泪般的经验教训

    故事背景,天书世界,现在项目已经属于成熟维护期,是时候总结一下当时的想法 第一个问题,为什么使用mongodb? 数据库对于游戏项目本身的要求与传统业务系统差异较大,所以nosql的弱结构性对于我那是 ...

  2. February 15 2017 Week 7 Wednesday

    Youth is not a time of life, it is a state of mind. 青春不是一段年华,而是一种心境. Likewise, maturity is not a tim ...

  3. xcode9 unity3d 新坑

    1.metal调试会报错,要在edit scheme里关掉

  4. 自动备份软件 —— Syncovery 7.98s Pro/Enterprise

    SynCovery自动备份软件原名Super Flexible Synchronizer,是目前功能最为强大的实时自动备份工具,连FTP.WebDAV等全部支持!最近从V6开始改用比较好记.易懂的新名 ...

  5. postgresql+postgis+pgrouting实现最短路径查询(2)---openlayers+geoserver实现最短路径

    自己的最短路径实现基本上是按照参考博文的1.2和3进行的,实现的时候也是问题不断,只能是一个一个解决. 问题1:自己发布的geoserver服务无法和OSM底图叠加到一起. 解决:参考博文2提到发布服 ...

  6. Spring 的下载、安装和使用

    一.下载 Spring 下载地址:http://repo.spring.io/libs-release-local/org/springframework/spring/4.0.6.RELEASE/  ...

  7. Java导出Highcharts需要的3个外部jar包

    xerces batik fop 这三个JAR包. 绝对可用.自本用过. 如果两个项目在同一个TOMCAT下并且同时用到xerces.jar,需要前这个外放在TOMCAT下的lib目录下.其他的容器中 ...

  8. Yii的事件和行为的区别和应用

    关于 Yii 的事件和行为的描述,可参考 http://www.yiiframework.com/doc/api/1.1/CComponent 事件 事件模型就是设计模式中的“观察者模式”:当对象的状 ...

  9. UVa 1395 - Slim Span(最小生成树变形)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  10. 7、springmvc的自动配置

    1.springmvc的自动配置 文档:https://docs.spring.io/spring-boot/docs/2.1.1.RELEASE/reference/htmlsingle/#boot ...