Learning notes | Data Analysis: 1.2 data wrangling
| Data Wrangling |
# Sort all the data into one file
files = ['BeijingPM20100101_20151231.csv','ChengduPM20100101_20151231.csv','GuangzhouPM20100101_20151231.csv','ShanghaiPM20100101_20151231.csv','ShenyangPM20100101_20151231.csv']
out_columns = ['No', 'year', 'month', 'day', 'hour', 'season', 'PM_US Post']
# Create a void dataframe
df_all_cities = pd.DataFrame()
# Iterate to write diffrent files
for inx, val in enumerate(files):
df = pd.read_csv(val)
df = df[out_columns]
# create a city column
df['city'] = val.split('P')[0]
# map season
df['season'] = df['season'].map({1:'Spring', 2:'Summer', 3:'Autumn', 4: 'Winter'})
# append each file and merge all files into one
df_all_cities = df_all_cities.append(df)
# replace the space in variable names with '_'
df_all_cities.columns = [c.replace(' ', '_') for c in df_all_cities.columns]
# Assignment:
# print the length of data
print("The number of row in this dataset is ",len(Beijing_data.index))
# calculating the number of records in column "PM_Dongsi"
print("There number of missing data records in PM_Dongsi is: ",len(Beijing_data.index) - len(Beijing_data['PM_Dongsi'].dropna()))
print("There number of missing data records in PM_Dongsihuan is: ",len(Beijing_data.index) - len(Beijing_data['PM_Dongsihuan'].dropna()))
print("There number of missing data records in PM_Nongzhanguan is: ",len(Beijing_data.index) - len(Beijing_data['PM_Nongzhanguan'].dropna()))
print("There number of missing data records in DEWP is: ",len(Beijing_data.index) - len(Beijing_data['DEWP'].dropna()))
print("There number of missing data records in HUMI is: ",len(Beijing_data.index) - len(Beijing_data['HUMI'].dropna()))
print("There number of missing data records in PRES is: ",len(Beijing_data.index) - len(Beijing_data['PRES'].dropna()))
print("There number of missing data records in TEMP is: ",len(Beijing_data.index) - len(Beijing_data['TEMP'].dropna()))
print("There number of missing data records in cbwd is: ",len(Beijing_data.index) - len(Beijing_data['cbwd'].dropna()))
print("There number of missing data records in Iws is: ",len(Beijing_data.index) - len(Beijing_data['Iws'].dropna()))
print("There number of missing data records in precipitation is: ",len(Beijing_data.index) - len(Beijing_data['precipitation'].dropna()))
print("There number of missing data records in Iprec is: ",len(Beijing_data.index) - len(Beijing_data['Iprec'].dropna()))
Learning notes | Data Analysis: 1.2 data wrangling的更多相关文章
- Learning notes | Data Analysis: 1.1 data evaluation
| Data Evaluation | - Use Shift + Enter or Shift + Return to run the upper box so as to make it disp ...
- How to use data analysis for machine learning (example, part 1)
In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite ...
- Learning Spark: Lightning-Fast Big Data Analysis 中文翻译
Learning Spark: Lightning-Fast Big Data Analysis 中文翻译行为纯属个人对于Spark的兴趣,仅供学习. 如果我的翻译行为侵犯您的版权,请您告知,我将停止 ...
- 用pandas进行数据清洗(二)(Data Analysis Pandas Data Munging/Wrangling)
在<用pandas进行数据清洗(一)(Data Analysis Pandas Data Munging/Wrangling)>中,我们介绍了数据清洗经常用到的一些pandas命令. 接下 ...
- An Introduction to Stock Market Data Analysis with R (Part 1)
Around September of 2016 I wrote two articles on using Python for accessing, visualizing, and evalua ...
- 学习笔记之Python for Data Analysis
Python for Data Analysis, 2nd Edition https://www.safaribooksonline.com/library/view/python-for-data ...
- 《利用Python进行数据分析: Python for Data Analysis 》学习随笔
NoteBook of <Data Analysis with Python> 3.IPython基础 Tab自动补齐 变量名 变量方法 路径 解释 ?解释, ??显示函数源码 ?搜索命名 ...
- Python for Data Analysis
Data Analysis with Python ch02 一些有趣的数据分析结果 Male描述的是美国新生儿男孩纸的名字的最后一个字母的分布 Female描述的是美国新生儿女孩纸的名字的最后一个字 ...
- 深入浅出数据分析 Head First Data Analysis Code 数据与代码
<深入浅出数据分析>英文名为Head First Data Analysis Code, 这本书中提供了学习使用的数据和程序,原书链接由于某些原因不 能打开,这里在提供一个下载的链接.去下 ...
随机推荐
- 【Leetcode】【Medium】Multiply Strings
Given two numbers represented as strings, return multiplication of the numbers as a string. Note: Th ...
- 防护XSS
http://blog.csdn.net/kouwoo/article/details/41946683 http://www.2cto.com/article/201309/247100.html ...
- ThreadLocal介绍
作者:知乎用户链接:https://www.zhihu.com/question/23089780/answer/62097840来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- SOJ1029 Humble Numbers (枚举)
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...
- BZOJ2160:拉拉队排练(Manacher)
Description 艾利斯顿商学院篮球队要参加一年一度的市篮球比赛了.拉拉队是篮球比赛的一个看点,好的拉拉队往往能帮助球队增加士气,赢得最终的比赛.所以作为拉拉队队长的楚雨荨同学知道,帮助篮球队训 ...
- php中文正则匹配
今天接到一个需求,用户昵称系统需要将昵称输入的字符类型限定为 中文,英文,数字, -,_ 显然这个应该用正则来实现,那么最终的规则是怎么样的呢?示例代码如下: <?php $str = '我爱北 ...
- ASP.NET SingalR + MongoDB 实现简单聊天室(二):实现用户信息、聊天室初始化,聊天信息展示完善
第一篇已经介绍了一大半了,下面就是详细业务了,其实业务部分要注意的地方有几个,剩下的就是js跟html互动处理. 首先在强调一下,页面上不可缺少的js:jquery,singalR.js,hubs . ...
- FastJSON使用列子
一.介绍: 前一段时间使用FastJSON对前台传入的数据进行处理,数据格式为JSONObject存入到数据库的一个字段里,前台以JSONArray传给后台,在JSONArray里存放不同的对象,当部 ...
- 浅谈DB2的四个隔离级别
隔离级别定义用于控制并发事务的行为,它决定在访问数据时数据是如何锁定的.如何与其他进程隔离的. 包括四个级别,级别从高到低: RR(可重复读取) RS(读取稳定性) CS(游标稳定性) UR(未提交的 ...
- 微信小程序跳H5页面
主页面:index.wxml 主页面:index.js ↑跳转到另一个wxml页面→recharge.wxml recharge.wxml web-view中设置跳转h5的链接,可以加上需要的参数: ...