You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<=(n); i++)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxm = 1e6 + ;
const double PI = acos(-1.0);
const double eps = 1e-;
const int dx[] = {-,,,,,,-,-};
const int dy[] = {,,,-,,-,,-};
int dir[][] = {{,},{,-},{-,},{,}};
const int mon[] = {, , , , , , , , , , , , };
const int monn[] = {, , , , , , , , , , , , };
const int mod = ;
#define inf 0x3f3f3f3f
#define ll long long
const int maxn = ; int u,v,w;
int n,m,ans,k,cnt;
double sum=0.0;
struct point
{
double x,y,z,r;
}a[maxn];
struct node
{
int u,v;
double w;
}e[maxn*maxn];
double dis(point a,point b)
{
return sqrt((b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y)+(b.z-a.z)*(b.z-a.z)) -a.r - b.r;
}
int fa[maxn];
int Find(int x)
{
if(fa[x]!=x)
fa[x]=Find(fa[x]);
return fa[x];
}
void join(int x,int y)
{
int xx = Find(x);
int yy = Find(y);
fa[xx]=yy;
}
bool cmp(node a,node b)
{
return a.w < b.w;
}
void kruskal()
{
cnt=,sum=;
for(int i=;i<m;i++)
{
int xx=Find(e[i].u);
int yy=Find(e[i].v);
if(xx != yy)
{
join(xx,yy);//
cnt++;
sum += e[i].w;
}
if(cnt == n-) break;
}
printf("%.3f\n",sum);
}
int main()
{
while(~scanf("%d",&n) && n)
{
sum=0.0, cnt=,m=;
rep(i,,n-)
fa[i]=i;
for(int i=;i<n;i++)
scanf("%lf%lf%lf%lf",&a[i].x, &a[i].y, &a[i].z, &a[i].r); for(int i=;i<n;i++) //n-1!
{
for(int j=i+; j<n; j++)
{
double d = dis(a[i],a[j]);
e[m].u = i;
e[m].v = j;
e[m].w = d<?:d;
m++;
}
} sort(e, e+m, cmp); kruskal();
}
}
/*
【题意】
给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能够相互连通。
如果两个球有重叠的部分则算为已连通,无需再搭桥。求搭建通路的最小费用(费用就是边权,就是两个球面之间的距离)。 【类型】
最小生成树 【分析】
建图是关键 【时间复杂度&&优化】 【trick】
*/

POJ 2031 Building a Space Station【最小生成树+简单计算几何】的更多相关文章

  1. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  2. POJ 2031 Building a Space Station 最小生成树模板

    题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...

  3. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  5. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  6. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  7. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  8. POJ 2031 Building a Space Station (计算几何+最小生成树)

    题目: Description You are a member of the space station engineering team, and are assigned a task in t ...

  9. POJ - 2031C - Building a Space Station最小生成树

    You are a member of the space station engineering team, and are assigned a task in the construction ...

随机推荐

  1. svn稀疏目录--通过设置工作目录的深度(depth)实现目录树的部分签出

    对于一个大的版本库来说,本地工作目录签出整个目录树是即费时又占地儿的.虽然可以只签出某个子目录树,但有时候还是需要从根目录签出.那么,怎么才能只把自己感兴趣的子目录签出来呢? 从svn1.5版开始,提 ...

  2. ConvexScore

    题目描述 You are given N points (xi,yi) located on a two-dimensional plane. Consider a subset S of the N ...

  3. tomcat优化总结【持续更新】

    配置优化 <Connector port=" maxThreads=" URIEncoding="UTF-8" maxKeepAliveRequests= ...

  4. Jenkins Pulgin 安装

    1. 利用管理插件找到需要安装的插件. 2. 如果安装失败,查看缺少啥. 3. 手动去下载http://updates.jenkins-ci.org/download/plugins/ 4. 安装此插 ...

  5. 【BZOJ】1607: [Usaco2008 Dec]Patting Heads 轻拍牛头

    [算法]模拟 #include<cstdio> #include<algorithm> using namespace std; ,maxm=; int a[maxn],A[m ...

  6. urllib3使用指南

    对比urllib,用urllib3处理http请求十分方便,可以嵌入web服务后端用于访问其它web实例提供的接口 一.安装 pip install urllib3 二.初始化 导入urllib3 i ...

  7. 【HNOI】d 最小割

    [题目大意]给定一个n*m的土地,每块可以种a或b作物,每种作物在不同的位置有不同的收成,同时,有q个子矩阵中,全部种指定的作物(a或b)会有一定的加成收成,求最大收成. [数据范围] 50% n,m ...

  8. hdu 1869 六度分离(最短路floyd)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1869 六度分离 Time Limit: 5000/1000 MS (Java/Others)    M ...

  9. js中的for in 循环

    1.数组 使用for in 遍历数组时,其索引被视为对象的属性,从而直接输出数组的索引 var arr = ["a","b","c"]; f ...

  10. KVM初始化过程

    转载:http://blog.csdn.net/dashulu/article/details/17074675 之前打算整理一下在Guest VM, KVM, QEMU中IO处理的整个流程,通过查阅 ...