POJ 2031 Building a Space Station【最小生成树+简单计算几何】
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.
All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.
You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.
You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.
Input
n
x1 y1 z1 r1
x2 y2 z2 r2
...
xn yn zn rn
The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.
The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.
Each of x, y, z and r is positive and is less than 100.0.
The end of the input is indicated by a line containing a zero.
Output
Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.
Sample Input
3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0
Sample Output
20.000
0.000
73.834
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<=(n); i++)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxm = 1e6 + ;
const double PI = acos(-1.0);
const double eps = 1e-;
const int dx[] = {-,,,,,,-,-};
const int dy[] = {,,,-,,-,,-};
int dir[][] = {{,},{,-},{-,},{,}};
const int mon[] = {, , , , , , , , , , , , };
const int monn[] = {, , , , , , , , , , , , };
const int mod = ;
#define inf 0x3f3f3f3f
#define ll long long
const int maxn = ; int u,v,w;
int n,m,ans,k,cnt;
double sum=0.0;
struct point
{
double x,y,z,r;
}a[maxn];
struct node
{
int u,v;
double w;
}e[maxn*maxn];
double dis(point a,point b)
{
return sqrt((b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y)+(b.z-a.z)*(b.z-a.z)) -a.r - b.r;
}
int fa[maxn];
int Find(int x)
{
if(fa[x]!=x)
fa[x]=Find(fa[x]);
return fa[x];
}
void join(int x,int y)
{
int xx = Find(x);
int yy = Find(y);
fa[xx]=yy;
}
bool cmp(node a,node b)
{
return a.w < b.w;
}
void kruskal()
{
cnt=,sum=;
for(int i=;i<m;i++)
{
int xx=Find(e[i].u);
int yy=Find(e[i].v);
if(xx != yy)
{
join(xx,yy);//
cnt++;
sum += e[i].w;
}
if(cnt == n-) break;
}
printf("%.3f\n",sum);
}
int main()
{
while(~scanf("%d",&n) && n)
{
sum=0.0, cnt=,m=;
rep(i,,n-)
fa[i]=i;
for(int i=;i<n;i++)
scanf("%lf%lf%lf%lf",&a[i].x, &a[i].y, &a[i].z, &a[i].r); for(int i=;i<n;i++) //n-1!
{
for(int j=i+; j<n; j++)
{
double d = dis(a[i],a[j]);
e[m].u = i;
e[m].v = j;
e[m].w = d<?:d;
m++;
}
} sort(e, e+m, cmp); kruskal();
}
}
/*
【题意】
给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能够相互连通。
如果两个球有重叠的部分则算为已连通,无需再搭桥。求搭建通路的最小费用(费用就是边权,就是两个球面之间的距离)。 【类型】
最小生成树 【分析】
建图是关键 【时间复杂度&&优化】 【trick】
*/
POJ 2031 Building a Space Station【最小生成树+简单计算几何】的更多相关文章
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5173 Accepte ...
- POJ 2031 Building a Space Station 最小生成树模板
题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...
- POJ 2031 Building a Space Station【经典最小生成树】
链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...
- poj 2031 Building a Space Station【最小生成树prime】【模板题】
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5699 Accepte ...
- POJ 2031 Building a Space Station
3维空间中的最小生成树....好久没碰关于图的东西了..... Building a Space Station Time Limit: 1000MS Memory Li ...
- POJ - 2031 Building a Space Station 三维球点生成树Kruskal
Building a Space Station You are a member of the space station engineering team, and are assigned a ...
- POJ 2031 Building a Space Station (计算几何+最小生成树)
题目: Description You are a member of the space station engineering team, and are assigned a task in t ...
- POJ - 2031C - Building a Space Station最小生成树
You are a member of the space station engineering team, and are assigned a task in the construction ...
随机推荐
- Nginx与Apache工作方式
原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://going.blog.51cto.com/7876557/1304204 Ngin ...
- 双向数据绑定实现之Object.defineProperty
vue.js利用的是es5的 defineproperty 特性实现的双向数据绑定,了解一下基本原理. 举例 var person= {}; Object.defineProperty(person, ...
- HDU 5901 Count primes 大素数计数
题意:计算1~N间素数的个数(N<=1e11) 题解:题目要求很简单,作为论文题,模板有两种 \(O(n^\frac{3}{4} )\),另一种lehmer\(O(n^\frac{2}{3})\ ...
- LightOJ 1009 二分图染色+BFS/种类并查集
题意:有两个阵营的人,他们互相敌对,给出互相敌对的人,问同个阵营的人最多有多少个. 思路:可以使用种类并查集写.也可以使用使用二分图染色的写法,由于给定的点并不是连续的,所以排序离散化一下,再进行BF ...
- 重拾Object--(一)初识
Java中的Object类有着特殊的意义,他是所有其它类的父类,查看Object类的源代码,可以发现代码不多,逻辑也很简单. Java所有类的源代码我们都可以在JDK的文件中查看,在JDK下会有一个名 ...
- querySelector()与querySelectorAll()
1.querySelector() 参数:css选择器 返回匹配指定css选择器元素的第一个子元素 2.querySelectorAll() 参数:css选择器 返回匹配指定css选择器的所有元素
- CentOS7安装MySQL5.7以及修改密码
CentOS7安装mysql [root@bd005 ~]# wget http://dev.mysql.com/get/mysql57-community-release-el7-8.noarch. ...
- ew做socks5代理
这个工具和之前讲过的xxoo类似.链接:https://www.cnblogs.com/nul1/p/8883271.html https://zhuanlan.zhihu.com/p/3282215 ...
- 学习 Linux,101: 自定义或编写简单脚本【转】
转自:http://www.ibm.com/developerworks/cn/linux/l-lpic1-105-2/index.html 学习如何使用标准的 shell 语法.循环和控制结构,以及 ...
- tcp窗口机制(写的最简单精炼的文章)
tcp窗口机制(写的最简单精炼的文章) http://blog.csdn.net/occupy8/article/details/48468445