POJ 2031 Building a Space Station【最小生成树+简单计算几何】
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.
All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.
You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.
You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.
Input
n
x1 y1 z1 r1
x2 y2 z2 r2
...
xn yn zn rn
The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.
The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.
Each of x, y, z and r is positive and is less than 100.0.
The end of the input is indicated by a line containing a zero.
Output
Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.
Sample Input
3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0
Sample Output
20.000
0.000
73.834
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<=(n); i++)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxm = 1e6 + ;
const double PI = acos(-1.0);
const double eps = 1e-;
const int dx[] = {-,,,,,,-,-};
const int dy[] = {,,,-,,-,,-};
int dir[][] = {{,},{,-},{-,},{,}};
const int mon[] = {, , , , , , , , , , , , };
const int monn[] = {, , , , , , , , , , , , };
const int mod = ;
#define inf 0x3f3f3f3f
#define ll long long
const int maxn = ; int u,v,w;
int n,m,ans,k,cnt;
double sum=0.0;
struct point
{
double x,y,z,r;
}a[maxn];
struct node
{
int u,v;
double w;
}e[maxn*maxn];
double dis(point a,point b)
{
return sqrt((b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y)+(b.z-a.z)*(b.z-a.z)) -a.r - b.r;
}
int fa[maxn];
int Find(int x)
{
if(fa[x]!=x)
fa[x]=Find(fa[x]);
return fa[x];
}
void join(int x,int y)
{
int xx = Find(x);
int yy = Find(y);
fa[xx]=yy;
}
bool cmp(node a,node b)
{
return a.w < b.w;
}
void kruskal()
{
cnt=,sum=;
for(int i=;i<m;i++)
{
int xx=Find(e[i].u);
int yy=Find(e[i].v);
if(xx != yy)
{
join(xx,yy);//
cnt++;
sum += e[i].w;
}
if(cnt == n-) break;
}
printf("%.3f\n",sum);
}
int main()
{
while(~scanf("%d",&n) && n)
{
sum=0.0, cnt=,m=;
rep(i,,n-)
fa[i]=i;
for(int i=;i<n;i++)
scanf("%lf%lf%lf%lf",&a[i].x, &a[i].y, &a[i].z, &a[i].r); for(int i=;i<n;i++) //n-1!
{
for(int j=i+; j<n; j++)
{
double d = dis(a[i],a[j]);
e[m].u = i;
e[m].v = j;
e[m].w = d<?:d;
m++;
}
} sort(e, e+m, cmp); kruskal();
}
}
/*
【题意】
给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能够相互连通。
如果两个球有重叠的部分则算为已连通,无需再搭桥。求搭建通路的最小费用(费用就是边权,就是两个球面之间的距离)。 【类型】
最小生成树 【分析】
建图是关键 【时间复杂度&&优化】 【trick】
*/
POJ 2031 Building a Space Station【最小生成树+简单计算几何】的更多相关文章
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5173 Accepte ...
- POJ 2031 Building a Space Station 最小生成树模板
题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...
- POJ 2031 Building a Space Station【经典最小生成树】
链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...
- poj 2031 Building a Space Station【最小生成树prime】【模板题】
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5699 Accepte ...
- POJ 2031 Building a Space Station
3维空间中的最小生成树....好久没碰关于图的东西了..... Building a Space Station Time Limit: 1000MS Memory Li ...
- POJ - 2031 Building a Space Station 三维球点生成树Kruskal
Building a Space Station You are a member of the space station engineering team, and are assigned a ...
- POJ 2031 Building a Space Station (计算几何+最小生成树)
题目: Description You are a member of the space station engineering team, and are assigned a task in t ...
- POJ - 2031C - Building a Space Station最小生成树
You are a member of the space station engineering team, and are assigned a task in the construction ...
随机推荐
- Jade模板引擎学习(二)语法:代码、变量、循环、过滤器及mixin
Jade语法 一.代码 不会被缓冲代码 ul - for(var i=0; i; i++) li Jade Engine 会转换为: <ul> <li>Jade Engine& ...
- B树及其变种
B树是为磁盘或其他直接存取的辅助存储设备而设计的一种平衡搜索树.B树类似于红黑树,但它们在降低磁盘I/O操场数方面要更好一些.许多数据库系统使用B树或B树的变种来存储信息. 介绍 常见的动态查找树包括 ...
- spring常用管理bean注解
spring提供了多个注解声明Bean为spring管理的Bean @Controller 声明此类是一个MVC类,通常与@RequestMapping一起使用 @Controller @Reques ...
- 9.python爬虫--pyspider
pyspider简介 PySpider:一个国人编写的强大的网络爬虫系统并带有强大的WebUI.采用Python语言编写,分布式架构,支持多种数据库后端,强大的WebUI支持脚本编辑器,任务监视器,项 ...
- SpringBoot jar包不支持jsp
官方原文如下: When running a Spring Boot application that uses an embedded servlet container (and is packa ...
- 【BZOJ4818】【SDOI2017】序列计数 [矩阵乘法][DP]
序列计数 Time Limit: 30 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Alice想要得到一个长度为n的序 ...
- 【NOIP】2013提高组 花匠(摆花)
[算法]DP||贪心 [题解] (1)动态规划: 令f[i][0..1]为两种条件下前i株花的最大保留数量,状态转移方程: f[i][0]=max(f[j][1]+1) (j=i-1...1)(h[i ...
- 复现VGG19训练自定义图像分类
1.复现VGG训练自定义图像分类,成功了哈哈. 需要代码工程可联系博主qq号,在左边连接可找到. 核心代码: # coding:utf-8 import tensorflow as tf import ...
- SQL SERVER 创建远程数据库链接 mysql oracle sqlserver
遇到的坑 在连接Oracle时,因为服务器为10g 32位版本,然后在本地安装了32为10g客户端,然后一直报错[7302.7303],后来下载了12c 64位版本,安装成功后,问题解决 原因:mss ...
- hdu 1548 A strange lift (dijkstra算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1548 题目大意:升降电梯,先给出n层楼,然后给出起始的位置,即使输出从A楼道B楼的最短时间. 注意的几 ...