题目描述

Bessie the cow is a hu e fan of card games, which is quite surprising, given her lack of opposable thumbs. Unfortunately, none of the other cows in the herd are good opponents. They are so bad, in fact, that they always play in a completely predictable fashion! Nonetheless, it can still be a challenge for Bessie to figure out how to win.

Bessie and her friend Elsie are currently playing a simple card game where they take a deck of 2N2N2N cards, conveniently numbered 1…2N1 \ldots 2N1…2N , and divide them into NNN cards for Bessie and NNN cards for Elsie. The two then play NNN rounds, where in each round Bessie and Elsie both play a single card. Initially, the player who plays the highest card earns a point. However, at one point during the game, Bessie can decide to switch the rules so that for the rest of the game, the player who plays the lowest card wins a point. Bessie can choose not to use this option, leaving the entire game in "high card wins" mode, or she can even invoke the option right away, making the entire game follow the "low card wins" rule.

Given that Bessie can predict the order in which Elsie will play her cards, please determine the maximum number of points Bessie can win.

贝西很喜欢玩一种纸牌游戏。

贝西和她的朋友艾尔西正在玩这个简单的纸牌游戏。游戏有2N张牌,牌上的数字是1到2N。把这些牌分成两份,贝西有N张,艾尔西有另外N张。接下来她们进行N轮出牌,每次各出一张牌。一开始,谁出的牌上的数字大,谁就获得这一轮的胜利。贝西有一个特殊权利,她可以在任意一个时刻把原本数字大的获胜的规则改成数字小的获胜,这个改变将会一直持续到游戏结束。特别的,贝西可以从第一轮开始就使用小牌获胜的规则,也可以直到最后一轮都还杂使用大牌获胜的规则。

现在,贝西已经知道了艾尔西出牌的顺序,她想知道她最多能够赢多少轮。

输入输出格式

输入格式:

The first line of input contains the value of N ( 2≤N≤50,0002 \leq N \leq 50,0002≤N≤50,000 ).

The next N lines contain the cards that Elsie will play in each of the

successive rounds of the game. Note that it is easy to determine Bessie's cards

from this information.

输出格式:

Output a single line giving the maximum number of points Bessie can score.

输入输出样例

输入样例#1:

4
1
8
4
3
输出样例#1:

3

说明

Here, Bessie must have cards 2, 5, and 6, and 7 in her hand, and she can use

these to win at most 3 points. For example, she can defeat the 1 card and then

switch the rules to "low card wins", after which she can win two more rounds.

提交地址 : Bzoj4391

F1[i] 表示从头开始按照方案一的最大赢的数;

F2[i] 表示从胃开始按照方案二的最大赢的数;

那么答案就是max(F1[i] + F2[i+1]);

合理性分析:

(坑)

代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <set>
using namespace std;
#define regi register int n, k;
int a[], b[], cnt;
int use[]; int f1[], f2[]; set <int> s1, s2; int main()
{
cin >> n; for (regi int i = ; i <= n ; i ++){
scanf("%d", &b[i]);
use[b[i]] = ;
} for (regi int i = ; i <= * n ; i ++){
if (!use[i])
{
a[++cnt] = i;
s1.insert(i);
s2.insert(-i);
}
} for (register int i = ; i <= n ; i ++){
set <int> :: iterator it = s1.lower_bound(b[i]);
if (it != s1.end())
{
s1.erase(it);
f1[i] = f1[i-] + ;
}
else
{
f1[i] = f1[i-];
}
} for (register int i = n ; i >= ; i --){
set <int> ::iterator it = s2.lower_bound(-b[i]);
if (it != s2.end())
{
s2.erase(it);
f2[i] = f2[i+] + ;
}
else
{
f2[i] = f2[i+];
}
} int ans = f2[];
for (register int i = ; i <= n ; i ++){
ans = max(ans, f1[i] + f2[i+]);
} /* for (regi int i = 1 ; i <= n ; ++i)
{
printf("%d ", f1[i]);
}
puts("");
for (register int i = 1 ; i <= n ; i ++)
{
printf("%d ", f2[i]);
}
puts("");*/ cout << ans << endl;
return ;
}

zZhBr

[USACO15DEC]高低卡(白金)High Card Low Card (Platinum)的更多相关文章

  1. 【题解】P3129高低卡(白金)High Card Low Card

    [题解][P3129 USACO15DEC]高低卡(白金)High Card Low Card (Platinum) 考虑贪心. 枚举在第几局改变规则,在改变规则之前,尽量出比它大的最小的牌,在改变规 ...

  2. 【BZOJ4391】[Usaco2015 dec]High Card Low Card(贪心)

    [BZOJ4391][Usaco2015 dec]High Card Low Card(贪心) 题面 BZOJ 题解 预处理前缀后缀的结果,中间找个地方合并就好了. #include<iostr ...

  3. 【刷题】BZOJ 4391 [Usaco2015 dec]High Card Low Card

    Description Bessie the cow is a huge fan of card games, which is quite surprising, given her lack of ...

  4. [BZOJ4391][Usaco2015 dec]High Card Low Card dp+set+贪心

    Description Bessie the cow is a huge fan of card games, which is quite surprising, given her lack of ...

  5. 【dp 贪心】bzoj4391: [Usaco2015 dec]High Card Low Card

    巧妙的贪心 Description Bessie the cow is a huge fan of card games, which is quite surprising, given her l ...

  6. [USACO15DEC]High Card Low Card (Platinum)

    https://www.zybuluo.com/ysner/note/1300791 题面 贝西和她的朋友艾尔西正在玩这个简单的纸牌游戏.游戏有\(2N\)张牌,牌上的数字是\(1\)到\(2N\). ...

  7. BZOJ4391 High Card Low Card [Usaco2015 dec](贪心+线段树/set库

    正解:贪心+线段树/set库 解题报告: 算辣直接甩链接qwq 恩这题就贪心?从前往后从后往前各推一次然后找一遍哪个地方最大就欧克了,正确性很容易证明 (这里有个,很妙的想法,就是,从后往前推从前往后 ...

  8. [bzoj4391] [Usaco2015 dec]High Card Low Card 贪心 线段树

    ---题面--- 题解: 观察到以决策点为分界线,以点数大的赢为比较方式的游戏都是它的前缀,反之以点数小的赢为比较方式的都是它的后缀,也就是答案是由两段答案拼凑起来的. 如果不考虑判断胜负的条件的变化 ...

  9. bzoj4391 [Usaco2015 dec]High Card Low Card

    传送门 分析 神奇的贪心,令f[i]表示前i个每次都出比对方稍微大一点的牌最多能赢几次 g[i]表示从i-n中每次出比对方稍微小一点的牌最多赢几次 ans=max(f[i]+g[i+1]) 0< ...

随机推荐

  1. xml文档的解析并通过工具类实现java实体类的映射:XML工具-XmlUtil

    若有疑问,可以联系我本人微信:Y1141100952 声明:本文章为原稿,转载必须说明 本文章地址,否则一旦发现,必追究法律责任 1:本文章显示通过 XML工具-XmlUtil工具实现解析soap报文 ...

  2. STL中区间最值max_element和min_element的用法

    前面的博客已经讲解了nth_element寻找区间第K大的用法,现在我们来说说这两个找区间最值的用法.两个函数都包含在algorithm库中. 一.函数原型 max_element template& ...

  3. C#Post提交解析XML文件

    protected string GetWebContent(string url)     {         Stream outstream = null;         Stream ins ...

  4. [SpringBoot——Web开发(使用Thymeleaf模板引擎)]

    [文字只能描述片段信息,具体细节参考代码] https://github.com/HCJ-shadow/SpringBootPlus 引入POM依赖 <properties> <ja ...

  5. PTA A1009&A1010

    第五天 A1009 Product of Polynomials (25 分) 题目内容 This time, you are supposed to find A×B where A and B a ...

  6. Java连载33-对象的创建和使用、内存分析

    一.创建一个学生类 每个学生都有学号信息,但是每一个学生的学号都是不同的,所以要访问这个学号必须先创建对象,通过对象去访问学号信息,学号信息不能直接通过“类”去访问,所以这种成员变量又被称为“实例变量 ...

  7. 如何判断前后端bug

    测试工程师不只是负责发现问题,除了发现问题这种基本功外,定位问题,提出解决方案,提出预防方案也是要掌握的技能.这里先说定位问题的要求,定位问题要向深入,前提当然是对功能.产品的流程.开发方案.开发人员 ...

  8. python + selenium 环境搭建及问题

    搭建平台windows 准备工具如下: ------------------------------------------------------------- 下载python https://w ...

  9. JVM 调优 - JPS

    Java命令学习系列(一)——Jps 2015-04-16 分类:Java 阅读(23993) 评论(7) 阿里大牛珍藏架构资料,点击链接免费获取 jps位于jdk的bin目录下,其作用是显示当前系统 ...

  10. Julia初学备忘

    println("hello!") println("hello!") print("hello!") print("hello! ...