[CF431C]k-Tree
题目描述
Quite recently a creative student Lesha had a lecture on trees. After the lecture Lesha was inspired and came up with the tree of his own which he called a k k k -tree.
A k k k -tree is an infinite rooted tree where:
- each vertex has exactly k k k children;
- each edge has some weight;
- if we look at the edges that goes from some vertex to its children (exactly k k k edges), then their weights will equal 1,2,3,...,k 1,2,3,...,k 1,2,3,...,k .
The picture below shows a part of a 3-tree.

As soon as Dima, a good friend of Lesha, found out about the tree, he immediately wondered: "How many paths of total weight n n n (the sum of all weights of the edges in the path) are there, starting from the root of a k k k -tree and also containing at least one edge of weight at least d d d ?".Help Dima find an answer to his question. As the number of ways can be rather large, print it modulo 1000000007 1000000007 1000000007 ( 109+7 10^{9}+7 109+7 ).
输入输出格式
输入格式:
A single line contains three space-separated integers: n n n , k k k and d d d ( 1<=n,k<=100; 1<=n,k<=100; 1<=n,k<=100; 1<=d<=k 1<=d<=k 1<=d<=k ).
输出格式:
Print a single integer — the answer to the problem modulo 1000000007 1000000007 1000000007 ( 109+7 10^{9}+7 109+7 ).
输入输出样例
4 5 2
7
简单的DP。
设f[i][j][0/1]为目前在深度为i,和为j,是否出现多大于等于d的边的方案数。
然后随便转移。
因为转移比较特色可以省掉第一维。
貌似网上还有别的方法。
f[i][j]表示和为i,出现的最大边权是j的方案数。
f[i+k][max(j,k)] += f[i][j]。
#include <bits/stdc++.h>
using namespace std;
#define reg register
#define mod 1000000007
int n, K, d;
int f[][][];
int ans; int main()
{
scanf("%d%d%d", &n, &K, &d);
f[][][] = ;
for (reg int i = ; i <= n ; i ++) //dep
{
for (reg int j = ; j <= n ; j ++) //tot val
{
for (reg int k = ; k <= K ; k ++) //the edge run
{
if (j - k < ) break;
if (k >= d) f[i][j][] = (f[i][j][] + f[i-][j-k][]) % mod;
else f[i][j][] = (f[i][j][] + f[i-][j-k][]) % mod;
f[i][j][] = (f[i][j][] + f[i-][j-k][]) % mod;
}
}
}
for (reg int i = ; i <= n ; i ++) ans = (ans + f[i][n][]) % mod;
cout << ans << endl;
return ;
}
[CF431C]k-Tree的更多相关文章
- E - Count on a tree 树上第K小
主席树的入门题目,这道题的题意其实就是说,给你一棵树,询问在两个节点之间的路径上的区间第K小 我们如何把树上问题转换为区间问题呢? 其实DFS就可以,我们按照DFS的顺序,对线段树进行建树,那么这个树 ...
- AOJ DSL_2_C Range Search (kD Tree)
Range Search (kD Tree) The range search problem consists of a set of attributed records S to determi ...
- HDU3333 Turing Tree(线段树)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=3333 Description After inventing Turing Tree, 3x ...
- Codeforces 343D Water Tree(DFS序 + 线段树)
题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...
- Codeforces 620E New Year Tree(DFS序 + 线段树)
题目大概说给一棵树,树上结点都有颜色(1到60),进行下面两个操作:把某结点为根的子树染成某一颜色.询问某结点为根的子树有多少种颜色. 子树,显然DFS序,把子树结点映射到连续的区间.而注意到颜色60 ...
- POJ3321 Apple Tree(DFS序)
题目,是对一颗树,单点修改.子树查询.典型的dfs序入门题. DFS序可以将一颗树与子树们表示为一个连续的区间,然后用线段树来维护:感觉算是树链剖分的一种吧,和轻重链剖分不同的是这是对子树进行剖分的. ...
- poj3237 Tree
Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...
- Size Balanced Tree(SBT) 模板
首先是从二叉搜索树开始,一棵二叉搜索树的定义是: 1.这是一棵二叉树: 2.令x为二叉树中某个结点上表示的值,那么其左子树上所有结点的值都要不大于x,其右子树上所有结点的值都要不小于x. 由二叉搜索树 ...
- [模板] K-D Tree
K-D Tree K-D Tree可以看作二叉搜索树的高维推广, 它的第 \(k\) 层以所有点的第 \(k\) 维作为关键字对点做出划分. 为了保证划分均匀, 可以以第 \(k\) 维排名在中间的节 ...
- HDU 2665.Kth number 区间第K小
Kth number Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
随机推荐
- style属性css与javascript对照表
有时候会用javascript来控制标签的style,但js的style属性写法跟css有点不一样,通常是一个单词的写法不变,单词-单词属性会去掉“-”,再把第二个单词的首字母大写,估计是为了与减法运 ...
- 4.1、顺序栈的实现(java实现)
1.实现源码 public class SeqStack { private final int MaxSize = 8; private int top; //栈顶 private Object s ...
- JDK13,不如温习下Java8
JDK13于9月17号正式GA,版本新特性可参考: https://www.oschina.net/news/109934/jdk-13-released 虽然JDK更新迅速,但开发者貌似并不买账,据 ...
- 右键没有新建word选项
两类解决办法 一. 1. 新建一个txt文本,并插入如下内容: Windows Registry Editor Version 5.00 [HKEY_CLASSES_ROOT\.doc] @=&quo ...
- [原创] 为Visio添加公式编辑器工具栏按钮
前言 作为理工科的学生,在写论文时,难免会在示意图中添加一些公式来说明研究内容.常用的画图工具就是 Visio .而常用的公式编辑器就是 Mathtype .对于 Word 这种软件,Mathtype ...
- elasticsearch倒排索引与TF-IDF算法
elasticsearch专栏:https://www.cnblogs.com/hello-shf/category/1550315.html 一.倒排索引(Inverted Index)简介 在关系 ...
- Centos 7 配置tomcat服务器
1.首先查看当前系统版本 uname -a 2.安装之前查看系统是否安装了java rpm -qa |grep java rpm -qa |grep jdk rpm -qa |grep gcj 如果没 ...
- 【Django】ajax(多对多表单)
1.前后端交互 <div class="shade hide"></div> <!--遮罩层,全屏--> <div class=" ...
- MangoDB的下载和安装
前面已经简单介绍了MongoDB,今天我们就要正式学习他了,话不多说,咱先来安装. 1.现在MongoDB已经到了4.0版本,咱先去官网下载,MongoDB官网传送门,下载的版本信息如下,点击Do ...
- .net core 3.0 Signalr - 07 业务实现-服务端 自定义管理组、用户、连接
Hub的管理 重写OnConnectedAsync 从连接信息中获取UserId.Groups,ConnectId,并实现这三者的关系,存放于redis中 代码请查看 using CTS.Signal ...