PCA(主成分分析)原理,步骤详解以及应用
主成分分析(PCA, Principal Component Analysis)
- 一个非监督的机器学习算法
- 主要用于数据的降维处理
- 通过降维,可以发现更便于人类理解的特征
- 其他应用:数据可视化,去噪等
主成分分析是尽可能地忠实再现原始重要信息的数据降维方法
原理推导:
如图,有一个二维的数据集,其特征分布于特征1和2两个方向
现在希望对数据进行降维处理,将数据压缩到一维,直观的我们可以想到将特征一或者特征二舍弃一个,可以得到这样的结果
------- : 舍弃特征1之后
------- : 舍弃特征2之后
可以看出,舍弃特征2保留特征1是一个较好的降维方案,此时点和点之间距离较大,拥有更高的可区分度
此时我们要想,肯定会有比这更好的方案,毕竟这太简单了
我们想象一下,能够找到这样的一条斜线w,将数据降维到w上(映射到w上)之后,能最好的保留原来的分布特征,且这些点分布在了一个轴上(斜线w)后点和点之间的距离也比之前的两种方案更加的大,此时的区分度也更加明显
思考:
- 如何找到让这个样本降维后间距最大的轴?
- 如何定义样本间距?
在统计学中,有一个直接的指标可以表示样本间的间距,那就是方差(Variance)
这样回过头来看思考1,问题就变成了:
找到一个轴,使得样本空间的所有点映射到这个轴之后,方差最大
求解这个轴的过程
将样例的均值归为0(demean)
将全部样本都减去样本的均值,可以将样本转化为这种:
经过demean后,在各个维度均值均为0,我们可以推出:
方便我们进行计算
我们想要求w轴的方向(w1,w2),使得 Var(Xproject) 最大,Xproject 是映射到w轴之后的X的坐标
因为我们已经进行了demean操作,均值为0,所以此时
而 ||Xproject(i)||2 的实际长度就是下图中蓝色向量的长度
实际上,求把一个向量映射到另一个向量上的对应映射的长度,就是线性代数中点乘的操作
此时w是一个方向向量,||w|| = 1,所以可以化简成:
且因为前面已经推知
通过替换,我们就得到了:
而我们的目标,就是求w,使得Var(Xproject) 最大
对公式进行拆分
再化简:
至此,我们的主成分分析法就化简成了一个目标函数最优化问题,因为是求最大值,可以使用梯度上升法解决
使用梯度上升法求解PCA
目标: 求w,使得 最大
f(X)的梯度
此时再观察,可以将式子展开能够得到这样的结果:
再化简,可得:
原式 =
=
最后就得出结论:
那么,求出第一个主成分之后,如何求出下一个主成分呢?
数据进行改变,将数据在第一主成分上的分量去掉,如图
Xpr(i) 是第一主成分,原数据去掉第一主成分之后可以得到
再在 X'(i) 上求第一主成分即可求出原数据的第二主成分,以此类推..
代码实现
import numpy as np
import matplotlib.pyplot as plt # 生成测试数据
X = np.empty((100, 2))
X[:, 0] = np.random.uniform(0., 100., size=100)
X[:, 1] = 0.75 * X[:, 0]+ 3. + np.random.normal(0, 10., size=100) # 均值归零方法
def demean(X):
return X - np.mean(X, axis=0) X_demean = demean(X) # 梯度上升法
def f(w, X):
return np.sum((X.dot(w)**2)) / len(X)
def df(w, X):
return X.T.dot(X.dot(w)) * 2. / len(X) # 将w转化为单位向量,方便计算
def direction(w):
return w / np.linalg.norm(w) #求第一主成分
def first_component(X, initial_w, eta, n_iters = 1e4, epsilon = 1e-8): w = direction(initial_w)
cur_iter = 0 while cur_iter < n_iters:
gradient = df(w, X)
last_w = w
w = w + eta * gradient
w = direction(w) # 每次求一个单位方向
if abs(f(w, X) - f(last_w, X)) < epsilon:
break cur_iter += 1
return w initial_w = np.random.random(X.shape[1]) # 不能从零开始 eta = 0.01 def first_n_component(n, X, eta=0.01, n_iters = 1e4, espilon = 1e-8):
X_pca = X.copy()
X_pca = demean(X_pca)
res = []
for i in range(n):
initial_w = np.random.random(X_pca.shape[1])
w = first_component(X_pca, initial_w, eta)
res.append(w) X_pca = X_pca - X_pca.dot(w).reshape(-1, 1)
X_pca = X_pca * w
return res # 注意 不能使用StandardScaler标准化数据 这样会打掉样本间的方差 求不出想要的结果 res = first_n_component(2, X)
PCA(主成分分析)原理,步骤详解以及应用的更多相关文章
- PCA(主成分分析)和LDA详解
http://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html http://www.c ...
- gcc/g++等编译器 编译原理: 预处理,编译,汇编,链接各步骤详解
摘自http://blog.csdn.net/elfprincexu/article/details/45043971 gcc/g++等编译器 编译原理: 预处理,编译,汇编,链接各步骤详解 C和C+ ...
- 人工智能之深度学习-初始环境搭建(安装Anaconda3和TensorFlow2步骤详解)
前言: 本篇文章主要讲解的是在学习人工智能之深度学习时所学到的知识和需要的环境配置(安装Anaconda3和TensorFlow2步骤详解),以及个人的心得体会,汇集成本篇文章,作为自己深度学习的总结 ...
- ASP.NET连接Oracle数据库的步骤详解(转)
ASP.NET连接Oracle数据库的步骤详解 本文我们主要介绍了ASP.NET连接Oracle数据库的步骤及每个步骤需要进行的设置,希望能够对您有所帮助. 在用ASP.NET开发应用程序时, ...
- Oracle 11g客户端在Linux系统上的配置步骤详解
Oracle 11g客户端在Linux系统上的配置步骤详解 2011-07-26 10:47 newhappy2008 CSDN博客 字号:T | T 本文我们主要介绍了Oracle 11g客户端在L ...
- centos6.4安装配置vpn服务器步骤详解
centos6.4安装配置vpn服务器步骤详解,从安装VPN到配置VPN服务器.配置VPN服务器的路由转发功能,每一步都很详细 一.VPN服务器环境说明 操作系统:CentOS release ...
- MapReduce工作原理图文详解 (炼数成金)
MapReduce工作原理图文详解 1.Map-Reduce 工作机制剖析图: 1.首先,第一步,我们先编写好我们的map-reduce程序,然后在一个client 节点里面进行提交.(一般来说可以在 ...
- MD5算法步骤详解
转自MD5算法步骤详解 之前要写一个MD5程序,但是从网络上看到的资料基本上一样,只是讲了一个大概.经过我自己的实践,我决定写一个心得,给需要实现MD5,但又不要求很高深的编程知识的童鞋参考.不多说了 ...
- EA创建用例图步骤详解
EA创建用例图步骤详解 1 创建一个项目 2 选择需要的模型 3 新建模型包 4 新建图表 5 新建模型包 6 创建用户角色Actor 7 新建用例 8 关联用户和用例 9 最后整个项目浏览器目录结构 ...
随机推荐
- Spring Boot 邮件发送的 5 种姿势!
邮件发送其实是一个非常常见的需求,用户注册,找回密码等地方,都会用到,使用 JavaSE 代码发送邮件,步骤还是挺繁琐的,Spring Boot 中对于邮件发送,提供了相关的自动化配置类,使得邮件发送 ...
- 异常:带有 CLSID {} 的 COM 对象无效或未注册
今天处理调试打印程序的时候,看到这个异常: 代码: try { string strApplyEmpno=""; string strApplyDeptCode="&qu ...
- [原创]MYSQL周期备份shell脚本
这个脚本是实现阿里云mysql数据库全量周期备份的shell脚本,实现备份数据按一周星期几分开存放.一下是脚本内容: #!/bin/bash echo `date`echo "backup ...
- Spring Bean 的装配方式
Spring Bean 的装配方式 装配 Bean 的三种方式 一个程序中,许多功能模块都是由多个为了实现相同业务而相互协作的组件构成的.而代码之间的相互联系又势必会带来耦合.耦合是个具有两面性的概念 ...
- 洛谷P2598 [ZJOI2009]狼和羊的故事 题解
题目链接: https://www.luogu.org/problemnew/show/P2598 分析: 我们知道此题的目的是将狼和羊分割开,很容易想到狼在S,羊在T中. 首先,我们可以在狼,羊,空 ...
- PTA 打印沙漏
https://pintia.cn/problem-sets/17/problems/260 #include <bits/stdc++.h> using namespace std; i ...
- Visual Studio 2015 WinForm应用程序打包教程
最近开发了一个小软件.由于需要打包.网上找了一些资料.然后整合了起来.希望对大家有所帮助.不全面请见谅. 本人开发工具用的是Visual Studio 2015 打包控件 InstallShield ...
- ubuntu环境下测试cache大小并校验
Cache存储器:电脑中为高速缓冲存储器,是位于CPU和主存储器DRAM(Dynamic Random Access Memory)之间,规模较小,但速度很高的存储器,通常由SRAM(Static R ...
- JAVA遍历机制的性能的比较
本文首发于cartoon的博客 转载请注明出处:https://cartoonyu.github.io/cartoon-blog/post/java/java%E9%81%8D%E5% ...
- Oracle 统计信息介绍
统计信息自动执行需要以下条件满足: dba_autotask_task 字段status值ENABLED dba_autotask_client 字段status值ENABLED dba_auto ...