Python 数据结构

本章节我们主要结合前面所学的知识点来介绍Python数据结构。


列表

Python中列表是可变的,这是它区别于字符串和元组的最重要的特点,一句话概括即:列表可以修改,而字符串和元组不能

以下是 Python 中列表的方法:

方法 描述
list.append(x) 把一个元素添加到列表的结尾,相当于 a[len(a):] = [x]。
list.extend(L) 通过添加指定列表的所有元素来扩充列表,相当于 a[len(a):] = L。
list.insert(i, x) 在指定位置插入一个元素。第一个参数是准备插入到其前面的那个元素的索引,例如 a.insert(0, x) 会插入到整个列表之前,而 a.insert(len(a), x) 相当于 a.append(x) 。
list.remove(x) 删除列表中值为 x 的第一个元素。如果没有这样的元素,就会返回一个错误。
list.pop([i]) 从列表的指定位置移除元素,并将其返回。如果没有指定索引,a.pop()返回最后一个元素。元素随即从列表中被移除。(方法中 i 两边的方括号表示这个参数是可选的,而不是要求你输入一对方括号,你会经常在 Python 库参考手册中遇到这样的标记。)
list.clear() 移除列表中的所有项,等于del a[:]。
list.index(x) 返回列表中第一个值为 x 的元素的索引。如果没有匹配的元素就会返回一个错误。
list.count(x) 返回 x 在列表中出现的次数。
list.sort() 对列表中的元素进行排序。
list.reverse() 倒排列表中的元素。
list.copy() 返回列表的浅复制,等于a[:]。

下面示例演示了列表的大部分方法:

实例

>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print(a.count(333), a.count(66.25), a.count('x'))
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort()
>>> a
[-1, 1, 66.25, 333, 333, 1234.5]

注意:类似 insert, remove 或 sort 等修改列表的方法没有返回值。


将列表当做堆栈使用

列表方法使得列表可以很方便的作为一个堆栈来使用,堆栈作为特定的数据结构,最先进入的元素最后一个被释放(后进先出)。用 append() 方法可以把一个元素添加到堆栈顶。用不指定索引的 pop() 方法可以把一个元素从堆栈顶释放出来。例如:

实例

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]

将列表当作队列使用

也可以把列表当做队列用,只是在队列里第一加入的元素,第一个取出来;但是拿列表用作这样的目的效率不高。在列表的最后添加或者弹出元素速度快,然而在列表里插入或者从头部弹出速度却不快(因为所有其他的元素都得一个一个地移动)。

实例

>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry")           # Terry arrives
>>> queue.append("Graham")          # Graham arrives
>>> queue.popleft()                 # The first to arrive now leaves
'Eric'
>>> queue.popleft()                 # The second to arrive now leaves
'John'
>>> queue                           # Remaining queue in order of arrival
deque(['Michael', 'Terry', 'Graham'])

列表推导式

列表推导式提供了从序列创建列表的简单途径。通常应用程序将一些操作应用于某个序列的每个元素,用其获得的结果作为生成新列表的元素,或者根据确定的判定条件创建子序列。

每个列表推导式都在 for 之后跟一个表达式,然后有零到多个 for 或 if 子句。返回结果是一个根据表达从其后的 for 和 if 上下文环境中生成出来的列表。如果希望表达式推导出一个元组,就必须使用括号。

这里我们将列表中每个数值乘三,获得一个新的列表:

>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]

现在我们玩一点小花样:

>>> [[x, x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]

这里我们对序列里每一个元素逐个调用某方法:

实例

>>> freshfruit = ['  banana', '  loganberry ', 'passion fruit  ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']

我们可以用 if 子句作为过滤器:

>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
[]

以下是一些关于循环和其它技巧的演示:

>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]

列表推导式可以使用复杂表达式或嵌套函数:

>>> [str(round(355/113, i)) for i in range(1, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']

嵌套列表解析

Python的列表还可以嵌套。

以下实例展示了3X4的矩阵列表:

>>> matrix = [
...     [1, 2, 3, 4],
...     [5, 6, 7, 8],
...     [9, 10, 11, 12],
... ]

以下实例将3X4的矩阵列表转换为4X3列表:

>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

以下实例也可以使用以下方法来实现:

>>> transposed = []
>>> for i in range(4):
...     transposed.append([row[i] for row in matrix])
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

另外一种实现方法:

>>> transposed = []
>>> for i in range(4):
...     # the following 3 lines implement the nested listcomp
...     transposed_row = []
...     for row in matrix:
...         transposed_row.append(row[i])
...     transposed.append(transposed_row)
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

del 语句

使用 del 语句可以从一个列表中依索引而不是值来删除一个元素。这与使用 pop() 返回一个值不同。可以用 del 语句从列表中删除一个切割,或清空整个列表(我们以前介绍的方法是给该切割赋一个空列表)。例如:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]

也可以用 del 删除实体变量:

>>> del a

元组和序列

元组由若干逗号分隔的值组成,例如:

>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))

如你所见,元组在输出时总是有括号的,以便于正确表达嵌套结构。在输入时可能有或没有括号, 不过括号通常是必须的(如果元组是更大的表达式的一部分)。


集合

集合是一个无序不重复元素的集。基本功能包括关系测试和消除重复元素。

可以用大括号({})创建集合。注意:如果要创建一个空集合,你必须用 set() 而不是 {} ;后者创建一个空的字典,下一节我们会介绍这个数据结构。

以下是一个简单的演示:

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket)                      # 删除重复的
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket                 # 检测成员
True
>>> 'crabgrass' in basket
False

>>> # 以下演示了两个集合的操作
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a                                  # a 中唯一的字母
{'a', 'r', 'b', 'c', 'd'}
>>> a - b                              # 在 a 中的字母,但不在 b 中
{'r', 'd', 'b'}
>>> a | b                              # 在 a 或 b 中的字母
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b                              # 在 a 和 b 中都有的字母
{'a', 'c'}
>>> a ^ b                              # 在 a 或 b 中的字母,但不同时在 a 和 b 中
{'r', 'd', 'b', 'm', 'z', 'l'}

集合也支持推导式:

>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
{'r', 'd'}

字典

另一个非常有用的 Python 内建数据类型是字典。

序列是以连续的整数为索引,与此不同的是,字典以关键字为索引,关键字可以是任意不可变类型,通常用字符串或数值。

理解字典的最佳方式是把它看做无序的键=>值对集合。在同一个字典之内,关键字必须是互不相同

一对大括号创建一个空的字典:{}。

这是一个字典运用的简单例子:

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> list(tel.keys())
['irv', 'guido', 'jack']
>>> sorted(tel.keys())
['guido', 'irv', 'jack']
>>> 'guido' in tel
True
>>> 'jack' not in tel
False

构造函数 dict() 直接从键值对元组列表中构建字典。如果有固定的模式,列表推导式指定特定的键值对:

>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'jack': 4098, 'guido': 4127}

此外,字典推导可以用来创建任意键和值的表达式词典:

>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}

如果关键字只是简单的字符串,使用关键字参数指定键值对有时候更方便:

>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'jack': 4098, 'guido': 4127}

遍历技巧

在字典中遍历时,关键字和对应的值可以使用 items() 方法同时解读出来:

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items():
...     print(k, v)
...
gallahad the pure
robin the brave

在序列中遍历时,索引位置和对应值可以使用 enumerate() 函数同时得到:

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
...     print(i, v)
...
0 tic
1 tac
2 toe

同时遍历两个或更多的序列,可以使用 zip() 组合:

>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
...     print('What is your {0}?  It is {1}.'.format(q, a))
...
What is your name?  It is lancelot.
What is your quest?  It is the holy grail.
What is your favorite color?  It is blue.

要反向遍历一个序列,首先指定这个序列,然后调用 reversed() 函数:

>>> for i in reversed(range(1, 10, 2)):
...     print(i)
...
9
7
5
3
1

要按顺序遍历一个序列,使用 sorted() 函数返回一个已排序的序列,并不修改原值:

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
...     print(f)
...
apple
banana
orange
pear

参阅文档

Python - 数据结构 - 第十五天的更多相关文章

  1. Python进阶(三十五)-Fiddler命令行和HTTP断点调试

    Python进阶(三十五)-Fiddler命令行和HTTP断点调试 一. Fiddler内置命令   上一节(使用Fiddler进行抓包分析)中,介绍到,在web session(与我们通常所说的se ...

  2. 孤荷凌寒自学python第八十五天配置selenium并进行模拟浏览器操作1

    孤荷凌寒自学python第八十五天配置selenium并进行模拟浏览器操作1 (完整学习过程屏幕记录视频地址在文末) 要模拟进行浏览器操作,只用requests是不行的,因此今天了解到有专门的解决方案 ...

  3. 孤荷凌寒自学python第七十五天开始写Python的第一个爬虫5

    孤荷凌寒自学python第七十五天开始写Python的第一个爬虫5 (完整学习过程屏幕记录视频地址在文末) 今天在上一天的基础上继续完成对我的第一个代码程序的书写. 直接上代码.详细过程见文末屏幕录像 ...

  4. 孤荷凌寒自学python第六十五天学习mongoDB的基本操作并进行简单封装4

    孤荷凌寒自学python第六十五天学习mongoDB的基本操作并进行简单封装4 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第十一天. 今天继续学习mongoDB的简单操作 ...

  5. 孤荷凌寒自学python第四十五天Python初学基础基本结束的下阶段预安装准备

     孤荷凌寒自学python第四十五天Python初学基础基本结束的下阶段预安装准备 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 今天本来应当继续学习Python的数据库操作,但根据过去我自 ...

  6. 孤荷凌寒自学python第三十五天python的文件操作之针对文件操作的os模块的相关内容

     孤荷凌寒自学python第三十五天python的文件操作之针对文件操作的os模块的相关内容 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 一.打开文件后,要务必记得关闭,所以一般的写法应当 ...

  7. 进击的Python【第十五章】:Web前端基础之DOM

    进击的Python[第十五章]:Web前端基础之DOM 简介:文档对象模型(Document Object Model,DOM)是一种用于HTML和XML文档的编程接口.它给文档提供了一种结构化的表示 ...

  8. python全套视频十五期(116G)

    python全套视频,第十五期,从入门到精通,基础班,就业班,面试,软件包 所属网站分类: 资源下载 > python视频教程 作者:精灵 链接:http://www.pythonheidong ...

  9. python 教程 第十五章、 结构布局

    第十五章. 结构布局 #!/usr/bin/env python #(1)起始行 "this is a module" #(2)模块文档 import sys #(3)模块导入 d ...

随机推荐

  1. Java生鲜电商平台-订单配送模块的架构与设计

    Java生鲜电商平台-订单配送模块的架构与设计 生鲜电商系统最终的目的还是用户下单支付购买, 所以订单管理系统是电商系统中最为复杂的系统,其作为中枢决定着整个商城的运转, 本文将对于生鲜类电商平台的订 ...

  2. JS基础语法---函数---介绍、定义、函数参数、返回值

    函数: 把一坨重复的代码封装,在需要的时候直接调用即可 函数的作用: 代码的重用 函数需要先定义,然后才能使用 函数名字:要遵循驼峰命名法 函数一旦重名,后面的会把前面的函数覆盖 Ctrl +鼠标左键 ...

  3. Dynamics CRM 2015/2016新特性之三十三:有了ExecuteTransactionRequest,再也不用担心部分成功部分失败了

    关注本人微信和易信公众号: 微软动态CRM专家罗勇 ,回复216或者20160329可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyong. ...

  4. 设置view的layer属性方法

    1.需要导入QuartzCore.framewoork框架到工程2.在文件中导入#import 3.设置 必须导入的空间 #import<QuartzCore/QuartzCore.h> ...

  5. dijit/_WidgetBase

    英文地址:http://dojotoolkit.org/reference-guide/1.10/dijit/_WidgetBase.html 介绍 dijit/_WidgetBase是Dijit包中 ...

  6. SQL Server阻塞的检查

    1. 阻塞   除了内存.CPU.I/O这些系统资源以外,阻塞和死锁是影响数据库应用性能的另一大因素. 所谓的「阻塞」,是指当一个数据库会话中的事务,正在锁定其他会话事务想要读取或修改的资源,造成这些 ...

  7. Python xlwt模块写Excel问题集合

    1.数字转换成汉字 数据库查询返回结果为多元组,在写入Excel需要判断,数据库查询结果是否为数字,为数字的话需要将其转换成对应的汉字,此时元组不可修改,所以需要将返回结果修改成列表.实现可以在数据库 ...

  8. html里js的execCommand的一点用法

    editorDoc.execCommand ('italic', false, null); 添加斜体 参考 http://help.dottoro.com/ljcvtcaw.php

  9. mongodb的数据库,集合,数据可介绍。

    我们知道,在关系型数据库里面有数据库.数据表.表里面是一行一行的数据.而mongodb是非关系型数据库,它有的是数据库.集合.文档,分别对应关系型里面的数据库.数据表.和表里面一行一行的数据.在mon ...

  10. centos7虚拟机端口命令

    cat /etc/redhat-release  #  查看centos 版本 Centos7端口常见命令 虚拟机新开了5005端口,系统内部是显示开了的,但是外部不能访问端口. 一些需要用到的命令: ...