Luogu P3600 随机数生成器
Luogu P3600 随机数生成器
题目描述
sol研发了一个神奇的随机数系统,可以自动按照环境噪音生成真·随机数。
现在sol打算生成\(n\)个\([1,x]\)的整数\(a_1...a_n\),然后进行一些询问。
\(q\)次询问,每次询问i有两个参数\(li\)和\(ri\),sol会计算\(\min_{li \leq j \leq ri} a_j\)(a数组中下标在\(li、ri\)之间的数的最小值)。
最后测试结果会是这些询问得到的结果的最大值。
sol进行了很多次实验,现在他想问问你测试结果的期望大小是多少,对\(666623333\)取模。
输入输出格式
输入格式:
第一行三个数\(n、x、q\)。
下面q行,第i行两个数表示\(li\)和\(ri\)。
输出格式:
一行一个数,表示答案。
输入输出样例
输入样例#1:
2 2 1
1 2
输出样例#1:
499967501
输入样例#2:
6 6 6
1 3
2 4
3 5
4 6
5 6
3 4
输出样例#2:
88571635
根据整数期望公式:
ans&=\sum_{i=1}^xi*p(X=i)\\
&=\sum_{i=1}^xp(X\geq i)\\
&=\sum_{i=1}^x1-p(X<i)
\end{align}
\]
因为是所有的最小值取最大值,所以\(p(X<i)\)比\(p(X\geq i)\)好求一些。
我们考虑对每个\(i\)分别求。
合法情况要求询问的每个区间中至少有一个\(<i\)的数。如果两个区间有包含关系,很明显大的区间没有用。将剩余的区间按左端点排序后,对于坐标上的每个点,包含它的区间的编号一定是连续的。所以我们将问题转换:有很多区间,选择一个区间的概率为\(P\),要选择一些区间将整个坐标轴覆盖,问概率。
很明显这些区间的左右端点都是单调不下降的(去掉无用区间)。设\(f_i\)表示最后一个选择的区间为\(i\),并且将\(r_i\)以及之前的坐标都覆盖了的概率。
\]
前缀和优化一下单次\(DP\)就可以做到\(O(n)\)了。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 2005
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
const ll mod=666623333;
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
}
int n,x,m;
struct interval {
int l,r;
bool operator <(const interval &a)const {
if(l!=a.l) return l<a.l;
return r>a.r;
}
}s[N];
interval st[N];
int top;
int L[N],R[N];
ll ans;
ll DP(ll p) {
if(p==1) return 1;
static ll f[N],pw[N],inv[N];
memset(f,0,sizeof(f));
pw[0]=inv[0]=1;
for(int i=1;i<=n;i++) pw[i]=pw[i-1]*(mod+1-p)%mod;
inv[1]=ksm(mod+1-p,mod-2);
for(int i=2;i<=n;i++) inv[i]=inv[i-1]*inv[1]%mod;
f[0]=1;
int lx=0,rx=0;
ll sum=1;
for(int i=1;i<=n;i++) {
while(lx<=i&&R[lx]<L[i]-1) {
sum=(sum-f[lx]*inv[lx]%mod+mod)%mod;
lx++;
}
while(rx+1<i&&R[rx+1]>=L[i]-1) {
sum=(sum+f[rx+1]*inv[rx+1])%mod;
rx++;
}
f[i]=sum*p%mod*pw[i-1]%mod;
}
ll ans=0;
for(int i=1;i<=n;i++) {
if(R[i]==m) (ans+=f[i]*pw[n-i])%=mod;
}
return ans;
}
int main() {
n=Get(),x=Get(),m=Get();
for(int i=1;i<=m;i++) s[i].l=Get(),s[i].r=Get();
sort(s+1,s+1+m);
for(int i=1;i<=m;i++) {
while(top>=1&&st[top].r>=s[i].r) top--;
st[++top]=s[i];
}
m=top;
for(int i=1;i<=m;i++) s[i]=st[i];
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) if(s[j].l<=i&&i<=s[j].r) R[i]=j;
for(int j=m;j>=1;j--) if(s[j].l<=i&&i<=s[j].r) L[i]=j;
}
top=0;
for(int i=1;i<=n;i++) {
if(L[i]&&R[i]) L[++top]=L[i],R[top]=R[i];
}
n=top;
ll invx=ksm(x,mod-2);
for(int i=1;i<=x;i++) {
(ans+=mod+1-DP((i-1)*invx%mod))%=mod;
}
cout<<ans;
return 0;
}
Luogu P3600 随机数生成器的更多相关文章
- Luogu P3600 随机数生成器(期望+dp)
题意 有一个长度为 \(n\) 的整数列 \(a_1, a_2, \cdots, a_n\) ,每个元素在 \([1, x]\) 中的整数中均匀随机生成. 有 \(q\) 个询问,第 \(i\) 个询 ...
- luogu P3600 随机数生成器【dp】
把期望改成方案数最后除一下,设h[i]为最大值恰好是i的方案数,那么要求的就是Σh[i]*i 首先包含其他区间的区间是没有意义的,用单调栈去掉 然后恰好不好求,就改成h[i]表示最大值最大是i的方案数 ...
- 洛谷P3600 随机数生成器(期望dp 组合数)
题意 题目链接 Sol 一条重要的性质:如果某个区间覆盖了另一个区间,那么该区间是没有用的(不会对最大值做出贡献) 首先不难想到枚举最终的答案\(x\).这时我们需要计算的是最大值恰好为\(x\)的概 ...
- P3600 随机数生成器
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- 洛谷P3600随机数生成器——期望+DP
原题链接 写到一半发现写不下去了... 所以orz xyz32768,您去看这篇题解吧,思路很清晰,我之前写的胡言乱语与之差距不啻天渊 #include <algorithm> #incl ...
- 洛谷 P3600 - 随机数生成器(期望 dp)
题面传送门 我竟然独立搞出了这道黑题!incredible! u1s1 这题是我做题时间跨度最大的题之一-- 首先讲下我四个月前想出来的 \(n^2\log n\) 的做法吧. 记 \(f(a)=\m ...
- luogu P2354 [NOI2014]随机数生成器 贪心 卡空间 暴力
LINK:随机数生成器 观察数据范围还是可以把矩阵给生成出来的. 考虑如何求出答案.题目要求把选出的数字从小到大排序后字典序尽可能的小 实际上这个类似于Mex的问题. 所以要从大到小选数字 考虑选择一 ...
- 【原创】开源Math.NET基础数学类库使用(13)C#实现其他随机数生成器
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
- 【BZOJ-3122】随机数生成器 BSGS
3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1362 Solved: 531[Submit][Sta ...
随机推荐
- 跨平台版本迁移之 XTTS 方案操作指南
本文转自 https://blog.csdn.net/Enmotech/article/details/80045576 作者 | 罗贵林: 云和恩墨技术工程师,具有8年以上的 Oracle 数据库工 ...
- December 07th, Week 49th Saturday, 2019
Snowflakes are pretty patterns etched in water's dreams. 雪花,是水在梦中镌刻的美丽图案. From Anthony T.Hincks. Tod ...
- 【bzoj5093】[Lydsy1711月赛]图的价值(NTT+第二类斯特林数)
题意: 给定\(n\)个点,一个图的价值定义为所有点的度数的\(k\)次方之和. 现在计算所有\(n\)个点的简单无向图的价值之和. 思路: 将式子列出来: \[ \sum_{i=1}^n\sum_{ ...
- 淘宝爬取图片和url
刚开始爬取了 百度图片和搜狗图片 但是图片不是很多,随后继续爬取淘宝图片,但是淘宝反爬比较厉害 之前的方法不能用 记录可行的 淘宝爬取 利用selenium爬取 https://cloud.tence ...
- 1+x 证书 Web 前端开发中级理论考试(试卷 8 )含答案
1+x 证书 Web 前端开发中级理论考试(试卷 8 ) 官方QQ群 转载请注明来源:妙笔生花个人博客http://blog.zh66.club/index.php/archives/438/ 一.单 ...
- 巧妙利用label标签实现input file上传文件自定义样式
提到上传文件,一般会想到用input file属性来实现,简单便捷,一行代码即可 但input file原生提供的默认样式大多情况下都不符合需求,且在不同浏览器上呈现的样式也不尽相同 我们往 ...
- JavaScript定时器方法
一.setTimeout() 延迟性操作 window.setTimeout(function(){ console.log('派大星');//延迟了4秒 },4000); console.log(' ...
- 当面试官要你介绍一下MQ时,该怎么回答?
一.为什么要使用MQ消息中间件? 一个用消息队列的人,不知道为啥用,有点尴尬.没有复习这点,很容易被问蒙,然后就开始胡扯了. 回答:这个问题,咱只答三个最主要的应用场景,不可否认还有其他的,但是只答三 ...
- 案例:Oracle 10g RAC 集群无法启动
环境:RHEL 5.7 + Oracle 10.2.0.5 RAC 很多年前的一套测试环境,今天发现集群无法启动.手工尝试启动crs,集群日志也无任何输出.进一步检查集群配置: [oracle@rac ...
- jQuery学习笔记Fisrt Day
跳过JS直接JQUERY,“不愧是你”. 对就是我. 今天开始jQuery学习第一天. click事件方法: 鼠标点击 dbl事件方法: 双击鼠标 mouseenter事件方法: 鼠标进入 mouse ...