【CF528E】Triangles 3000(计算几何)

题面

CF

平面上有若干条直线,保证不平行,不会三线共点。

求任选三条直线出来围出的三角形的面积的期望。

题解

如果一定考虑直接计算这个三角形的面积,我们很难不去弄出这三个交点。

我们需要的是低于\(O(n^3)\)的复杂度,而\(O(n^3)\)的做法可以直接暴力枚举三条直线。

考虑向量计算面积的方法,对于一个在三角形\(\Delta ABC\)之外的点\(O\),我们可以有:

\[S\Delta ABC=\frac{1}{2}(OA\times OB+OB\times OC+OC\times OA)
\]

这个证明不难,画图把每一部分的面积表示出来就很简单了。

接下来枚举一条直线,剩下点按照极角顺序依次加入,然后这个贡献可以拆成三个部分,而我们只算都在枚举的直线上的交点的贡献,在其他直线上的可以在其他时候算。

于是要求的就是这条直线和枚举的直线的交点与前面所有直线与枚举的直线的交点与\(O\)构成的向量的叉积。

叉积是:\((x1,y1)\times (x2,y2)=x1*y2-x2*y1\),

于是得到:\((x1,y1)\times (x2,y2)+(x1,y1)\times (x3,y3)=x1*(y2+y3)-y1*(x2+x3)\)

这个东西显然等于\((x1,y1)\times ((x2,y2)+(x3,y3))\),那么就可以很开心的前缀和了。

注意为了保证顺序正确,需要把所有的直线按照极角提前排序。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 3030
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n;double ans;
struct Vect{double x,y;}O,g[MAX];
struct Line{double a,b,c,ang;}L[MAX];
bool operator<(Line a,Line b){return a.ang<b.ang;}
Vect Intersection(Line a,Line b)
{
if(fabs(a.a)>1e-9)
{
double y=(b.c*a.a-a.c*b.a)/(a.b*b.a-a.a*b.b);
double x=-(a.c+a.b*y)/a.a;
return (Vect){x,y};
}
else
{
double x=(b.c*a.b-a.c*b.b)/(a.a*b.b-a.b*b.a);
double y=-(a.c+a.a*x)/a.b;
return (Vect){x,y};
}
}
double Cross(Vect a,Vect b){return a.x*b.y-a.y*b.x;}
Vect operator-(Vect a,Vect b){return (Vect){a.x-b.x,a.y-b.y};}
Vect operator+(Vect a,Vect b){return (Vect){a.x+b.x,a.y+b.y};}
bool cmp(Vect a,Vect b){return Cross(a,b)>=0;}
int main()
{
n=read();O=(Vect){1e7,1e7};
for(int i=1;i<=n;++i)
{
L[i].a=read(),L[i].b=read(),L[i].c=-read();
double x,y;
if(fabs(L[i].b)>1e-7)x=1,y=-L[i].a/L[i].b;
else y=1,x=-L[i].b/L[i].a;
L[i].ang=atan2(y,x);
}
sort(&L[1],&L[n+1]);
/*
for(int i=1;i<=n;++i)
for(int j=i+1;j<=n;++j)
for(int k=j+1;k<=n;++k)
{
Vect g[3];
g[0]=Intersection(L[i],L[j]);
g[1]=Intersection(L[j],L[k]);
g[2]=Intersection(L[k],L[i]);
ans-=(Cross(g[0],g[1])+Cross(g[1],g[2])+Cross(g[2],g[0]));
}
ans/=1.0*n*(n-1)*(n-2)/3;
printf("%.10lf\n",ans);ans=0;
*/
for(int i=1;i<=n;++i)
{
Vect s=(Vect){0,0};
for(int j=i%n+1;j!=i;j=j%n+1)
{
Vect a=Intersection(L[i],L[j]);
ans+=Cross(s,a);s=s+a;
}
}
ans/=1.0*n*(n-1)*(n-2)/3;
printf("%.10lf\n",ans);
return 0;
}

【CF528E】Triangles 3000(计算几何)的更多相关文章

  1. CF528E Triangles 3000

    cf luogu 既然要求三角形面积,不如考虑三角形的面积公式.因为是三条直线,所以可以考虑利用三个交点来算面积,如果这个三角形按照逆时针方向有\(ABC\)三点,那么他的面积为\(\frac{\ve ...

  2. Codeforces 528E Triangles 3000 - 计算几何

    题目传送门 传送点I 传送点II 传送点III 题目大意 给定$n$的平面上的直线,保证没有三条直线共点,两条直线平行.问随机选出3条直线交成的三角形面积的期望. 显然$S=\frac{1}{2}ah ...

  3. CodeForces 682E Alyona and Triangles (计算几何)

    Alyona and Triangles 题目连接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/J Description You ar ...

  4. ACM学习历程——UVA10112 Myacm Triangles(计算几何,多边形与点的包含关系)

    Description   Problem B: Myacm Triangles Problem B: Myacm Triangles Source file: triangle.{c, cpp, j ...

  5. Codeforces Round #296 (Div. 1) E. Triangles 3000

    http://codeforces.com/contest/528/problem/E 先来吐槽一下,一直没机会进div 1, 马力不如当年, 这场题目都不是非常难,div 2 四道题都是水题! 题目 ...

  6. POI 2018.10.21

    [POI2008]TRO-Triangles https://www.cnblogs.com/GXZlegend/p/7509699.html 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积 ...

  7. hdu 5784 How Many Triangles 计算几何,平面有多少个锐角三角形

    How Many Triangles 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5784 Description Alice has n poin ...

  8. hdu-5784 How Many Triangles(计算几何+极角排序)

    题目链接: How Many Triangles Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  9. 【计算几何】【极角排序】【二分】Petrozavodsk Summer Training Camp 2016 Day 6: Warsaw U Contest, XVI Open Cup Onsite, Sunday, August 28, 2016 Problem J. Triangles

    平面上给你n(不超过2000)个点,问你能构成多少个面积在[A,B]之间的Rt三角形. 枚举每个点作为直角顶点,对其他点极角排序,同方向的按长度排序,然后依次枚举每个向量,与其对应的另一条直角边是单调 ...

随机推荐

  1. poj 3061 Subsequence 二分 前缀和 双指针

    地址 http://poj.org/problem?id=3061 解法1 使用双指针 由于序列是连续正数 使用l r 表示选择的子序列的起始 每当和小于要求的时候 我们向右侧扩展 增大序列和 每当和 ...

  2. Redis令牌桶限流

    一 .场景描述 在开发接口服务器的过程中,为了防止客户端对于接口的滥用,保护服务器的资源, 通常来说我们会对于服务器上的各种接口进行调用次数的限制.比如对于某个 用户,他在一个时间段(interval ...

  3. 线段树模板加模板题POJ3468

    POJ - 3468 整理了个新的线段树的模板,暑期集训的时候学长给的模板,每个节点单单存了自己所要维护的内容,还是少了点.导致在写pushdown的时候,len我会有点难写.所以就整理个新的模板. ...

  4. leetcode-數組篇

    Remove Element public class Lc27 { public static int removeElement(int[] nums, int val) { if (nums = ...

  5. springaop\ cglib\ AspectJ

    元编程 vs 动态代理 vs isa代理 springaop的底层实现有两种,一种是jdk的动态代理,另一种是cglib,springaop没有用到aspectj,只是借鉴了它并添加了aspectj风 ...

  6. Java入门系列之类继承、抽象类、接口(五)

    前言 C#和Java关于类.抽象类.接口使用方式基本相似,只是对应关键字使用不同罢了,本节呢,我们只是对照C#和Java中关于这三个概念在具体使用时,看看有哪些不一样的地方. 类继承 C#和Java在 ...

  7. Mybatis的原理分析1(@Mapper是如何生效的)

    接着我们上次说的SpringBoot自动加载原理.我们大概明白了在maven中引入mybatis后,这个模块是如下加载的. 可能会有人问了,一般我们的dao层都是通过Mapper接口+Mapper.x ...

  8. jQuery学习笔记Fisrt Day

    跳过JS直接JQUERY,“不愧是你”. 对就是我. 今天开始jQuery学习第一天. click事件方法: 鼠标点击 dbl事件方法: 双击鼠标 mouseenter事件方法: 鼠标进入 mouse ...

  9. latex初步入门:springer llncs

    最近写一篇论文呢,使用到了latex,记录一下吧. 使用的是标准 : springer 的llncs类 核心:使用官方的samplepaper.tex基础上进行修改 这个是最快上手,也是最快能码出一篇 ...

  10. 【转载】Android Studio Service AIDL 详解

    公司产品之前IM这块存在很多问题,消息到达率低,加上协议上有些问题,丢消息频繁,所以需要重构IM,AIDL不能解决以上问题.好吧!那AIDL可以解决什么问题?什么是AIDL? 什么是AIDL? AID ...