代码:https://github.com/Yochengliu/Relation-Shape-CNN

文章:https://arxiv.org/abs/1904.07601

作者直播:https://www.bilibili.com/video/av61824733

作者维护了一个收集一系列点云论文、代码、数据集的github仓库:https://github.com/Yochengliu/awesome-point-cloud-analysis

这篇paper是CVPR 2019 Oral & Best paper finalist

Abstract & Introduction

在点云中,由于不规则点中隐含的形状很难捕捉,使得点云分析非常具有挑战性。在本文中,作者针对点云数据提出了RS-CNN,即Relation-Shape Convolutional Neural Network,其核心思想是从几何拓扑中学习点云关系信息。RS-CNN在多个数据集中都取得了SOTA的表现。
主要贡献如下:

  • 提出了一种新型的从关系中学习的卷积算子关系形状卷积。它可以显式地对点的几何关系进行编码,从而在很大程度上提高了对形状的感知能力和鲁棒性。即,RS-Conv
  • 提出一个具有关系形状卷积的深层层次结构,即,RS-CNN。将规则网格CNN扩展到不规则配置,实现点云的上下文形状感知学习。即,基于RS-Conv设计的RS-CNN
  • 在三个任务中对具有挑战性的基准进行广泛的实验,以及深入的经验和理论分析,证明RS-CNN达到了SOTA的水平。即,精度高效果好(modelnet40 93.6)

Shape-Aware Representation Learning

首先,作者归纳了一个通用的卷积公式
\[
f_{P_{sub}}=\sigma(\mathcal{A}(\{\tau(f_{x_{j}}),\forall x_j\})),d_{ij}<r\forall(x_j) \in \mathcal{N}(x_i)
\]
其中,\(x\)表示3D点,\(f_{x_j}\)表示\({x_j}\)的特征向量,\(d_{ij}\)是\(x_i\)和\(x_j\)之间的欧式距离Euclidean distance,\(\tau\)用于转化单点特征,\(\mathcal{A}\)表示聚合函数,\(\sigma\)为激活函数。在这个公式中,\(\mathcal{A}\)和\(\tau\)的定义很关键,也就是这篇paper的创新所在。

首先,如果将这个公式套用在2D图像当中,则\(\tau(f_{x_{j}})=W_j \cdot f_{x_j}\),其中\(w_j\)为learnable weight(可以理解为卷积核),“\(\cdot\)”表示点乘,\(\mathcal{A}\)表示求和,其实就是一个卷积操作。而传统卷积有两个问题,1是不具备置换不变性,2是没有学习到形状信息。因此,作者对\(\mathcal{A}\)和\(\tau\)进行了修改,使其处理点云信息时,具有置换不变性,以及能够学习到形状信息。置换不变性在pointnet中已经实现,就是用max来表示\(\mathcal{A}\),那么剩下的就是学习形状信息,那么如何学习形状信息?就是通过这个\(\tau\)实现的。
为了捕获形状信息(或者关系信息),作者将\(\tau\)定义为:
\[
\tau(f_{x_{j}})=W_{ij} \cdot f_{x_j}=\mathcal{M}(h_{ij})\cdot f_{x_j}
\]
\(\mathcal{M}\)用于将两个点的关系映射为high-level的信息(\(\mathcal{M}\)实际上就是MLP,将低维特征映射成高维特征,而低维特征就是点的位置关系,比如两个点间的距离,相对坐标等),而\(h_{ij}\)就是低维特征。
RS-Conv的流程图如下:

  1. 首先通过FPS进行采样,得到质心\(X_i\)
  2. 在球形领域寻找近邻,\(X_j\)
  3. 对于每个邻居点j,计算j和i的low-level信息,即\(h_{ij}\),\(h_{ij}\)的表示方法很多,作者在论文中将其定义为\(h_{ij}=[3D-Ed,x_i-x_j,x_i,x_j]\),即将两点间的欧式距离(1维),相对坐标(3维),i的坐标(3维)和j的坐标(3维)进行拼接,得到一个10维的low-level信息。
  4. 使用MLP将\(h_{ij}\)映射成高维信息,即\(\mathcal{M}(h_{ij})\),得到\(W_{ij}\),注意,这边映射成高维信息的\(W_{ij}\)的维度要和\(f_{x_j}\)的特征维度相同,才可以进行点乘操作
  5. 将得到的\(W_{ij}\)和\(f_{x_j}\)进行点乘。
  6. max操作,聚合所有近邻的信息作为质心\(x_i\)的新特征,接着为了实现更强大的形状感知表示,将\(x_i\)进行进一步的通道提升映射。即上图中的channel-raising mapping

以上就是RS-Conv的操作过程。有点复杂,类比成2D图像的卷积的话,一个明显的区别是RS-Conv的卷积核\(W_{ij}\)是通过\(h_{ij}\)(即低维关系信息)学习来的,这也是本文的最大创新点,但实际上,这个操作在其他论文中也有出现,比如GACnet,DGCNN只是他们定义\(h_{ij}\)的方式不同。
网络结构如下

比较简单,不赘述,具体如何实现需要看代码。

实验

Shape classification.

Shape part segmentation

Normal estimation

消融实验


虽然在modelnet40上取得了93.6的结果,但是看消融实验可知,作者加入了很多trick才得到这样的精度,比如Pointnet++中的多尺度,以及voting test(具体是啥暂不明了),如果去除多尺度和voting test只能达到92.2的精度。虽说创新点少,但论文中那么多的分析也需要大量的积累才能做到。

聚合函数,即\(\mathcal{A}\)的消融实验

对于low-level信息,即\(h_{ij}\)的消融实验

总结

在这项工作中,作者提出了RS-CNN,即 Relation-Shape Convolutional Neural Network,它将规则的网格CNN扩展到不规则的配置来进行点云分析。 RS-CNN的核心是一种从低维信息中学习relation的新型的卷积运算器。通过这种方式,可以对点的空间布局进行明确的推理,从而获得判断形状的意识。此外,还可以获得良好的几何关系支撑,如对刚性变换的鲁棒性。因此,RS-CNN可以实现上下文感知的形状学习,具有很高的学习效率。

想法:
其实这篇paper的创新不大,除去多尺度和voting test,其精度只有92.2。目前看了一些点云分类的paper,感觉这些paper都有点类似。而对于modelnet40,其40个类别数量分布差异很大,实际上当我们不断训练,提高0点几个点的时候,有些类别应该已经严重过拟合,我们在玩什么啊,令人深思啊。

Relation-Shape Convolutional Neural Network for Point Cloud Analysis(CVPR 2019)的更多相关文章

  1. 论文笔记:(CVPR2019)Relation-Shape Convolutional Neural Network for Point Cloud Analysis

    目录 摘要 一.引言 二.相关工作 基于视图和体素的方法 点云上的深度学习 相关性学习 三.形状意识表示学习 3.1关系-形状卷积 建模 经典CNN的局限性 变换:从关系中学习 通道提升映射 3.2性 ...

  2. Tensorflow - Implement for a Convolutional Neural Network on MNIST.

    Coding according to TensorFlow 官方文档中文版 中文注释源于:tf.truncated_normal与tf.random_normal TF-卷积函数 tf.nn.con ...

  3. tensorflow MNIST Convolutional Neural Network

    tensorflow MNIST Convolutional Neural Network MNIST CNN 包含的几个部分: Weight Initialization Convolution a ...

  4. 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)

    Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...

  5. 卷积神经网络(Convolutional Neural Network,CNN)

    全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网 ...

  6. Convolutional Neural Network in TensorFlow

    翻译自Build a Convolutional Neural Network using Estimators TensorFlow的layer模块提供了一个轻松构建神经网络的高端API,它提供了创 ...

  7. 卷积神经网络(Convolutional Neural Network, CNN)简析

    目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID ...

  8. HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL DEEP CONVOLUTIONAL NEURAL NETWORK阅读笔记

    HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL  DEEP  CONVOLUTIONAL NEURAL NETWORK 论文地址:https:/ ...

  9. A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK文章笔记

    A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK 文章地址:https://ieeex ...

随机推荐

  1. JVM 知识点补充——永久代和元空间

    之前已经讲过了不少有关 JVM 的内容,今天准备将之前没有细讲的部分进行补充,比如:永久代和元空间. 永久代 Java 的内存中有一块称之为方法区的部分,在 JDK8 之前, Hotspot 虚拟机中 ...

  2. 封装自己通用的 增删改查的方法 By EF

    封装自己的通用CURD By EF using System; using System.Collections.Generic; using System.Data.Entity; using Sy ...

  3. Dubbo 优雅停机演进之路

    一.前言 在 『ShutdownHook- Java 优雅停机解决方案』 一文中我们聊到了 Java 实现优雅停机原理.接下来我们就跟根据上面知识点,深入 Dubbo 内部,去了解一下 Dubbo 如 ...

  4. 开根号 HYSBZ - 3211

    区间修改+区间查询(线段树板子题) 另外因为1e9内的数开5次根号必定为1或0,所以我们可以提前打表i<=sqrt[1e9], s[i]=sqrt(i).这样每次改值不必再调用系统的sqrt: ...

  5. 使用Spring Data JPA进行数据分页与排序

    一.导读 如果一次性加载成千上万的列表数据,在网页上显示将十分的耗时,用户体验不好.所以处理较大数据查询结果展现的时候,分页查询是必不可少的.分页查询必然伴随着一定的排序规则,否则分页数据的状态很难控 ...

  6. CentOS 7下MySQL 5.7安装

    5.7和之前版本的MySQL有一些不同,现把CentOS 7下MySQL 5.7安装.配置与应用完整过程记下来,或许对新手来说有用. 本文描述的安装是采用通用的二进制压缩包(linux – Gener ...

  7. jsp一句话木马

    <%@page import="java.io.*,java.util.*,java.net.*,java.sql.*,java.text.*"%> <%!Str ...

  8. 一些 bypass WAF 技巧

    也是之前讲课写的,现在搬运过来 --- WAF所处的位置 * 云WAF * 硬件WAF * 软件WAF * 代码级WAF   WAF的绕过 1 架构层    1 对于云WAF,寻找真实ip       ...

  9. Redis集群--Redis集群之哨兵模式

    echo编辑整理,欢迎转载,转载请声明文章来源.欢迎添加echo微信(微信号:t2421499075)交流学习. 百战不败,依不自称常胜,百败不颓,依能奋力前行.--这才是真正的堪称强大!!! 搭建R ...

  10. JavaScript BOM学习

    Mirror王宇阳 2019年11月13日 [首发] 数日没有更新博文了,觉得不好意思了!这不是,整理了一下JavaScript的一下BOM笔记资料,今天贡献出来!(HTML DOM也会随后整理发表) ...