vgg16是牛津大学视觉几何组(Oxford Visual Geometry Group)2014年提出的一个模型. vgg模型也得名于此.

2014年,vgg16拿了Imagenet Large Scale Visual Recognition Challenge 2014 (ILSVRC2014)

比赛的冠军.

论文连接:https://arxiv.org/abs/1409.1556

http://www.robots.ox.ac.uk/~vgg/research/very_deep/牛津大学视觉研究小组在这里放出了他们在ImageNet比赛训练得到的模型文件.

网上有很多vgg16的实现,下面

vgg的模型结构如下:

每一层的卷积核的大小都是3*3.

现在的keras里已经集成了很多模型,具体可以参考keras的文档.

https://keras.io/applications/#models-for-image-classification-with-weights-trained-on-imagenet

下面是keras_applications/vgg16.py的实现.比tensorflow的代码更易于理解.

"""VGG16 model for Keras.

# Reference

- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
https://arxiv.org/abs/1409.1556) (ICLR 2015) """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import os from . import get_submodules_from_kwargs
from . import imagenet_utils
from .imagenet_utils import decode_predictions
from .imagenet_utils import _obtain_input_shape preprocess_input = imagenet_utils.preprocess_input WEIGHTS_PATH = ('https://github.com/fchollet/deep-learning-models/'
'releases/download/v0.1/'
'vgg16_weights_tf_dim_ordering_tf_kernels.h5')
WEIGHTS_PATH_NO_TOP = ('https://github.com/fchollet/deep-learning-models/'
'releases/download/v0.1/'
'vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5') def VGG16(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
"""Instantiates the VGG16 architecture. Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`. # Arguments
include_top: whether to include the 3 fully-connected
layers at the top of the network.
weights: one of `None` (random initialization),
'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded.
input_tensor: optional Keras tensor
(i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)`
(with `channels_last` data format)
or `(3, 224, 224)` (with `channels_first` data format).
It should have exactly 3 input channels,
and width and height should be no smaller than 32.
E.g. `(200, 200, 3)` would be one valid value.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the
last convolutional block.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a 2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified. # Returns
A Keras model instance. # Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
"""
backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs) if not (weights in {'imagenet', None} or os.path.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
' as true, `classes` should be 1000')
# Determine proper input shape
input_shape = _obtain_input_shape(input_shape,
default_size=224,
min_size=32,
data_format=backend.image_data_format(),
require_flatten=include_top,
weights=weights) if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
if not backend.is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
# Block 1
x = layers.Conv2D(64, (3, 3),
activation='relu',
padding='same',
name='block1_conv1')(img_input)
x = layers.Conv2D(64, (3, 3),
activation='relu',
padding='same',
name='block1_conv2')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) # Block 2
x = layers.Conv2D(128, (3, 3),
activation='relu',
padding='same',
name='block2_conv1')(x)
x = layers.Conv2D(128, (3, 3),
activation='relu',
padding='same',
name='block2_conv2')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) # Block 3
x = layers.Conv2D(256, (3, 3),
activation='relu',
padding='same',
name='block3_conv1')(x)
x = layers.Conv2D(256, (3, 3),
activation='relu',
padding='same',
name='block3_conv2')(x)
x = layers.Conv2D(256, (3, 3),
activation='relu',
padding='same',
name='block3_conv3')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) # Block 4
x = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block4_conv1')(x)
x = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block4_conv2')(x)
x = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block4_conv3')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) # Block 5
x = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block5_conv1')(x)
x = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block5_conv2')(x)
x = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block5_conv3')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x) if include_top:
# Classification block
x = layers.Flatten(name='flatten')(x)
x = layers.Dense(4096, activation='relu', name='fc1')(x)
x = layers.Dense(4096, activation='relu', name='fc2')(x)
x = layers.Dense(classes, activation='softmax', name='predictions')(x)
else:
if pooling == 'avg':
x = layers.GlobalAveragePooling2D()(x)
elif pooling == 'max':
x = layers.GlobalMaxPooling2D()(x) # Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = keras_utils.get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = models.Model(inputs, x, name='vgg16') # Load weights.
if weights == 'imagenet':
if include_top:
weights_path = keras_utils.get_file(
'vgg16_weights_tf_dim_ordering_tf_kernels.h5',
WEIGHTS_PATH,
cache_subdir='models',
file_hash='64373286793e3c8b2b4e3219cbf3544b')
else:
weights_path = keras_utils.get_file(
'vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
WEIGHTS_PATH_NO_TOP,
cache_subdir='models',
file_hash='6d6bbae143d832006294945121d1f1fc')
model.load_weights(weights_path)
if backend.backend() == 'theano':
keras_utils.convert_all_kernels_in_model(model)
elif weights is not None:
model.load_weights(weights) return model

可以清楚地看出来,所用的卷积核全部是3*3的.

用keras做预测也很简单,

from keras.applications.vgg16 import VGG16
model = VGG16()
print(model.summary())

上面代码会把权重文件下载到

这里贴一段网上找的代码

from keras.applications.vgg16 import VGG16, preprocess_input, decode_predictions

from keras.preprocessing.image import load_img, img_to_array
import numpy as np
# VGG-16 instance
model = VGG16(weights='imagenet', include_top=True) image = load_img('C:/Pictures/Pictures/test_imgs/golden.jpg', target_size=(224, 224))
image_data = img_to_array(image) # reshape it into the specific format
image_data = image_data.reshape((1,) + image_data.shape)
print(image_data.shape) # prepare the image data for VGG
image_data = preprocess_input(image_data) # using the pre-trained model to predict
prediction = model.predict(image_data) # decode the prediction results
results = decode_predictions(prediction, top=3) print(results)

很简单

  • 加载模型
  • 加载图片,预处理
  • 前向传播
  • 解释输出tensor

 


vgg19和vgg16结构基本一致的,就是多了几个卷积层.

基础分类网络VGG的更多相关文章

  1. TCP/IP协议(一)网络基础知识 网络七层协议

    参考书籍为<图解tcp/ip>-第五版.这篇随笔,主要内容还是TCP/IP所必备的基础知识,包括计算机与网络发展的历史及标准化过程(简述).OSI参考模型.网络概念的本质.网络构建的设备等 ...

  2. Python黑客编程基础3网络数据监听和过滤

    网络数据监听和过滤 课程的实验环境如下: •      操作系统:kali Linux 2.0 •      编程工具:Wing IDE •      Python版本:2.7.9 •      涉及 ...

  3. 黑马程序员:Java基础总结----网络编程

    黑马程序员:Java基础总结 网络编程   ASP.Net+Android+IO开发 . .Net培训 .期待与您交流! 网络编程 网络通讯要素 . IP地址 . 网络中设备的标识 . 不易记忆,可用 ...

  4. 网络编程基础:网络基础之网络协议、socket模块

    操作系统(简称OS)基础: 应用软件不能直接操作硬件,能直接操作硬件的只有操作系统:所以,应用软件可以通过操作系统来间接操作硬件 网络基础之网络协议: 网络通讯原理: 连接两台计算机之间的Intern ...

  5. GO学习-(19) Go语言基础之网络编程

    Go语言基础之网络编程 现在我们几乎每天都在使用互联网,我们前面已经学习了如何编写Go语言程序,但是如何才能让我们的程序通过网络互相通信呢?本章我们就一起来学习下Go语言中的网络编程. 关于网络编程其 ...

  6. python渗透测试入门——基础的网络编程工具

    <Python黑帽子--黑客与渗透测试编程之道学习>这本书是我在学习安全的过程中发现的在我看来十分优秀的一本书,业内也拥有很高的评价,所以在这里将自己的学习内容分享出来. 1.基础的网络编 ...

  7. 转 经典分类网络Googlenet

    转自https://my.oschina.net/u/876354/blog/1637819 2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLe ...

  8. 【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络Vgg

    上周我们讲了经典CNN网络AlexNet对图像分类的效果,2014年,在AlexNet出来的两年后,牛津大学提出了Vgg网络,并在ILSVRC 2014中的classification项目的比赛中取得 ...

  9. 周末班:Python基础之网络编程

    一.楔子 你现在已经学会了写python代码,假如你写了两个python文件a.py和b.py,分别去运行,你就会发现,这两个python的文件分别运行的很好.但是如果这两个程序之间想要传递一个数据, ...

随机推荐

  1. 【Java例题】2.2 分数类

    2.定义分数类,包括分子和分母变量.构造方法. 加减乘除方法.化简方法.值计算方法和显示分子和分母的方法. 然后编写一个主类,在其主方法中通过定义两个分数对象来 显示每一个分数的分子值.分母值.化简和 ...

  2. java-极光推送教程

    一.准备工作: 1.访问极光推送官网:https://www.jiguang.cn/accounts/login/form 2.注册登陆,拿到appKey和masterSecret 3.创建一个应用, ...

  3. 伪分布式Spark + Hive on Spark搭建

    Spark大数据平台有使用一段时间了,但大部分都是用于实验而搭建起来用的,搭建过Spark完全分布式,也搭建过用于测试的伪分布式.现在是写一遍随笔,记录一下曾经搭建过的环境,免得以后自己忘记了.也给和 ...

  4. Unity的赛车游戏实现思路

    unity目前版本实现赛车的技术方案主要有3种: 1.wheelCollider,设置motorTorque.brakeTorque.steerAngle来实现车子的推动和转弯,优点是上手简单,而且很 ...

  5. PDF.js 详情解说

    pdf.js资源下载 点我下载 自定义默认加载的pdf资源 在web/view.js中我们可以通过DEFAULT_URL设置默认加载的pdf.通过上面代码我们也可以看出来可以通过后缀名来指定加载的pd ...

  6. Yii2 基础模板前后台登录分离

    1.用GII 生成一个模块(modules)名字为 admin 2.在./config/web.php 中加入如下配置 'modules' => [ 'admin' => [ 'class ...

  7. hbase rowkey 设计

    HBase中的rowkey是按字典顺序排序的,通过rowkey查询可以对千万级的数据实现毫秒级响应.然而,如果rowkey设计不合理的话经常会出现一个很普遍的问题----热点.当大量client的请求 ...

  8. rocketMQ部署

    rocketMQ部署(单机) 1.          环境: CentOS7 64  &  JDK1.8+ 64  & 用户:www 2.          下载binary文件包: ...

  9. springboot搭建通用mapper

    对于搭建一个小项目自己测试玩如果采用传统的SSM框架配置起来太过于繁琐,使用springboot简化配置再搭配通用mapper简直不要太方便,话不多说,直接上代码. 首先是pom文件,直接去sprin ...

  10. Mybatis批处理(批量查询,更新,插入)

    mybatis批量查询 注意这里的 in 和   <trim prefix="(" suffix=")"> 以及 in ( )的三种方式的(例1(推 ...