1. 先下载并安装nltk包,准备一张简单的图片存入代码所在文件目录,搜集英文停用词表

import nltk
nltk.download()

2. 绘制词云图

import re
import numpy as np
import pandas as pd
#import matplotlib
import matplotlib.pyplot as plt
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.corpus import stopwords
from PIL import Image
from wordcloud import WordCloud
from sklearn.datasets import fetch_20newsgroups
#from sklearn.feature_extraction.text import CountVectorizer
from collections import Counter, defaultdict def word_cut(contents, cut=','):
res = []
for content in contents:
content = content.lower()
words = [word for word in re.split(cut, content) if word]
res.append(words)
return res def word_count(contents):
#words_count = Counter(sum(contents,[])) #慢
word_count_dict = defaultdict(lambda: 0)
for content in contents:
temp_dict = Counter(content)
for key in temp_dict:
word_count_dict[key] += temp_dict[key]
return word_count_dict def stopwords_filter(contents, stopwords):
contents_clean = []
word_count_dict = defaultdict(lambda: 0)
for line in contents:
line_clean = []
for word in line:
if word in stopwords:
continue
line_clean.append(word)
word_count_dict[word] += 1
contents_clean.append(line_clean) words_count = list(word_count_dict.items())
words_count.sort(key=lambda x:-x[1])
words_count = pd.DataFrame(words_count, columns=['word', 'count'])
return contents_clean, words_count # 从外部导入数据
'''
df_news = pd.read_table('val.txt', names=['category','theme','URL','content'], encoding='utf-8')
stopwords = pd.read_csv("stopwords.txt", index_col = False, sep="\t",
quoting=3, names=['stopword'], encoding='utf-8')
contents = df_news.content.values.tolist()
stopwords = stopwords.stopword.values.tolist()''' # 自定义切词
'''
#[ ,.\n\t--\':;?!/+<>@]
#[ ,.\n\t=--\'`_\[\]:;?!^/|+<>{}@~\\]
#contents = word_cut(contents=news.data, cut='[ ,.\n\t-\`_\[\]:;?!\^/|+<>{}@~]')
'''
# 将数据整理为模型入参形式
'''
#vec = CountVectorizer()
#X_train = vec.fit_transform(X_train) #不可直接将vec用在测试集上
#vectorizer_test = CountVectorizer(vocabulary=vec.vocabulary_)
#X_test = vectorizer_test.transform(X_test)
''' # 可从中筛选停用词
'''
word_count_dict = word_count(contents)
temp = list(word_count_dict.items())
temp.sort(key=lambda x:-x[1])
df = pd.DataFrame(temp, columns=['word','count'])
df.to_csv(r'D:\PycharmProjects\zsyb\stop_words.csv')
''' # 调包实现上述功能
news = fetch_20newsgroups(subset='all')
# 自定义的快好几倍,可以加if not in ‘’去标点
contents = [word_tokenize(content.lower()) for content in news.data] #sent_tokenize(content)
punctuations = set(list(',.\n\t-\`_()\[\]:;?!$#%&.*=\^/|+<>{}@~')) #标点
digits = {str(i) for i in range(50)}
others = {'--', "''", '``', "'", '...'}
# 下载网上的停用词表加入 nltk_data\corpora\stopwords,低频词过滤(不要加入停用词)
stopWords = set(stopwords.words('english')) | punctuations | digits | others
contents_clean, words_count = stopwords_filter(contents, stopWords)
#df.groupby(by=['word']).agg({"count": np.size}) # 绘制词云图
fontpath = 'simhei.ttf'
aimask = np.array(Image.open(r"D:\PycharmProjects\zsyb\pig.png")) wc = WordCloud(font_path = fontpath, #设置字体
background_color = "white", #背景颜色
max_words = 1000, #词云显示的最大词数
max_font_size = 100, #字体最大值
min_font_size = 10, #字体最小值
random_state = 42, #随机数
collocations = False, #避免重复单词
mask = aimask, #造型遮盖
width = 1200, height = 800, #图像宽高,需配合plt.figure(dpi=xx)放缩才有效
margin = 2 #字间距
)
word_frequence = {x[0]:x[1] for x in words_count.head(100).values}
word_cloud=wc.fit_words(word_frequence) plt.figure(dpi=100) #通过这里可以放大或缩小
plt.subplot(121)
plt.imshow(aimask)
#plt.axis("off") #隐藏坐标
plt.subplot(122)
plt.imshow(word_cloud)
#plt.axis("off") #隐藏坐标

python 绘制词云图的更多相关文章

  1. Python pyecharts绘制词云图

    一.pyecharts绘制词云图WordCloud.add()方法简介 WordCloud.add()方法简介 add(name,attr,value, shape="circle" ...

  2. python爬虫+词云图,爬取网易云音乐评论

    又到了清明时节,用python爬取了网易云音乐<清明雨上>的评论,统计词频和绘制词云图,记录过程中遇到一些问题 爬取网易云音乐的评论 一开始是按照常规思路,分析网页ajax的传参情况.看到 ...

  3. 使用python绘制词云

    最近在忙考试的事情,没什么时间敲代码,一个月也没几天看代码,最近看到可视化的词云,看到网上也很多这样的工具, 但是都不怎么完美,有些不支持中文,有的中文词频统计得莫名其妙.有的不支持自定义形状.所有的 ...

  4. 使用pyecharts绘制词云图-淘宝商品评论展示

    一.什么是词云图? 词云图是一种用来展现高频关键词的可视化表达,通过文字.色彩.图形的搭配,产生有冲击力地视觉效果,而且能够传达有价值的信息. 制作词云图的网站有很多,简单方便,适合小批量操作. BI ...

  5. python 数据分析--词云图,图形可视化美国竞选辩论

    这篇博客从用python实现分析数据的一个完整过程.以下着重几个python的moudle的运用"pandas",""wordcloud"," ...

  6. python 可视化 词云图

    文本挖掘及可视化知识链接 我的代码: # -*- coding: utf-8 -*- from pandas import read_csv import numpy as np from sklea ...

  7. python 做词云图

    #导入需要模块 import jieba import numpy as np import matplotlib.pyplot as plt from PIL import Image from w ...

  8. Python 绘制词云

    文本内容:data(包含很多条文本) 1.分词: import jieba data_cut = data.apply(jieba.lcut) 2.去除停用词: stoplist.txt:链接:htt ...

  9. 吃瓜的正确姿势,Python绘制罗志祥词云图

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 这篇文章中向大家介绍了Python绘制词云的方法,不难看出绘制词云可以说是一 ...

随机推荐

  1. May 19th, 2019. Week 21st, Sunday

    Fight for what matters to you. 为自己珍视的东西奋斗吧! We all want to make our life goals true, and we all expe ...

  2. ajax给全局变量设置值,请先关掉异步上传效果

    $.ajax({ type: 'POST', url: "/downloadExcelInfo", timeout: 0, async: false, contentType: & ...

  3. MySQL InnoDB 索引 (INDEX) 页结构

    MySQL InnoDB 索引 (INDEX) 页结构 InnoDB 为了不同的目的而设计了不同类型的页,我们把用于存放记录的页叫做索引页 索引页内容 索引页分为以下部分: File Header:表 ...

  4. Codeforces Round #598 (Div. 3) D. Binary String Minimizing 贪心

    D. Binary String Minimizing You are given a binary string of length n (i. e. a string consisting of ...

  5. tushare+pandas实现财经数据分析

    写在前面的话: 这是一个优秀的财经接口包,博主平时工作中也有使用,觉得很好,现在分享一些使用心得给需要的人,tushare并不是一个炒股软件,只是一个提供pandas数据的工具,具体如何使用,因人而异 ...

  6. 牛客网sql刷题解析-完结

    查找最晚入职员工的所有信息 解题步骤: 题目:查询最晚入职员工的所有信息        目标:查询员工的所有信息 筛选条件:最晚入职           答案: SELECT *--查询所有信息就用* ...

  7. Python - __name__=='__main__'是干啥的,以及python -m与python的区别

    1. __name__=='__main__'是干啥的 先看例子,准备a.py和b.py放在同一个文件夹中 vi a.py # coding: utf-8 print("i am just ...

  8. SpringBoot2.0中的事务@Transactional

    在SpringBoot2.0中使用使用需要注意的地方. 1. 加@Transactional的方法不能是private和protected修饰,private会直接报编译错误,protected不会报 ...

  9. .net core event bus

    NServiceBus (收费) https://docs.particular.net/tutorials/quickstart/ MassTransit http://masstransit-pr ...

  10. WPF线段式布局的一种实现

    线段式布局 有时候需要实现下面类型的布局方案,不知道有没有约定俗成的称呼,我个人强名为线段式布局.因为元素恰好放置在线段的端点上. 实现 WPF所有布局控件都直接或间接的继承自System.Windo ...