3573: [Hnoi2014]米特运输

Time Limit: 20 Sec  Memory Limit: 128 MB
Submit: 1023  Solved: 604
[Submit][Status][Discuss]

Description

米特是D星球上一种非常神秘的物质,蕴含着巨大的能量。在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题。
    D星上有N个城市,我们将其顺序编号为1到N,1号城市为首都。这N个城市由N-1条单向高速通道连接起来,构成一棵以1号城市(首部)为根的树,高速通道的方向由树中的儿子指向父亲。树按深度分层:根结点深度为0,属于第1层;根结点的子节点深度为1,属于第2层;依此类推,深度为i的结点属于第i+l层。
    建好高速通道之后,D星人开始考虑如何具体地储存和传输米特资源。由于发展程度不同,每个城市储存米特的能力不尽相同,其中第i个城市建有一个容量为A[i]的米特储存器。这个米特储存器除了具有储存的功能,还具有自动收集米特的能力。如果到了晚上六点,有某个储
存器处于未满的状态,它就会自动收集大气中蕴含的米特能源,在早上六点之前就能收集满;但是,只有在储存器完全空的状态下启动自动收集程序才是安全的,未满而又非空时启动可能有安全隐患。早上六点到七点间,根节点城市(1号城市)会将其储存器里的米特消耗殆尽。
根节点不会自动搜集米特,它只接受子节点传输来的米特。早上七点,城市之间启动米特传输过程,传输过程逐层递进:先是第2层节点城市向第1层(根节点城市,即1号城市)传输,直到第1层的储存器满或第2层的储存器全为空;然后是第3层向第2层传输,直到对于第2层的每个节点,其储存器满或其予节点(位于第3层)的储存器全为空;依此类推,直到最后一层传输完成。传输过程一定会在晚上六点前完成。
    由于技术原因,运输方案需要满足以下条件:

(1)不能让某个储存器到了晚上六点传输结束时还处于非空但又未满的状态,这个时候储存器仍然会启动自动收集米特的程序,而给已经储存有米特的储存器启动收集程序可能导致危险,也就是说要让储存器到了晚上六点时要么空要么满;

(2)关于首都——即1号城市的特殊情况,  每天早上六点到七点间1号城市中的米特储存器里的米特会自动被消耗殆尽,即运输方案不需要考虑首都的米特怎么运走;

(3)除了1号城市,每个节点必须在其子节点城市向它运输米特之前将这座城市的米特储存器中原本存有的米特全部运出去给父节点,不允许储存器中残存的米特与外来的米特发生混合;

(4)运向某一个城市的若干个来源的米特数量必须完全相同,不然,这些来源不同的米特按不同比例混合之后可能发生危险。
    现在D星人已经建立好高速通道,每个城市也有了一定储存容量的米特储存器。为了满足上面的限制条件,可能需要重建一些城市中的米特储存器。你可以,也只能,将某一座城市(包括首都)中屎来存在的米特储存器摧毁,再新建一座任意容量的新的米特储存器,其容量可以是小数(在输入数据中,储存器原始容量是正整数,但重建后可以是小数),不能是负数或零,使得需要被重建的米特储存器的数目尽量少。

Input

第一行是一个正整数N,表示城市的数目。
    接下来N行,每行一个正整数,其中的第i行表示第i个城市原来存在的米特储存器的容量。
    再接下来是N-I行,每行两个正整数a,b表示城市b到城市a有一条高速通道(a≠b)。

Output

输出文件仅包含一行,一个整数,表示最少的被重建(即修改储存器容量)的米特储存器的数目。

Sample Input

5
5
4
3
2
I
1 2
1 3
2 4
2 5

Sample Output

3

HINT

【样例解释】
  一个最优解是将A[1]改成8,A[3]改成4,A[5]改成2。这样,2和3运给1的量相等,4和5运
给2的量相等,且每天晚上六点的时候,1,2满,3,4,5空,满足所有限制条件。

对于100%的数据满足N<500000,A[j]<10^8

Source

Solution

题目大意:已知一棵树,可以改变一些点,使得改变后的树满足:对于每个节点的所有子节点权值相等,并且这个节点的权值等于他所有子节点权值和

真的是读不懂题的节奏啊....

发现,只要任意一个点的权值确定,则整棵树一定确定,那么枚举这个点..

统计的值巨大,可以考虑取log用double记录.

这么多坑点,让我做个球 啊..

Code

#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define eps 1e-5
#define maxn 500010
int n,d[maxn],a[maxn];
struct EdgeNode{int next,to;}edge[maxn<<];
int head[maxn],cnt;
void add(int u,int v) {cnt++; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].to=v;}
void insert(int u,int v) {add(u,v); add(v,u);}
double s[maxn],ans[maxn];
void DFS(int now,int fa)
{
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=fa)
{
s[edge[i].to]=s[now]+log(d[now]);
DFS(edge[i].to,now);
}
}
int main()
{
n=read();
for (int i=; i<=n; i++) a[i]=read();
for (int u,v,i=; i<=n-; i++) u=read(),v=read(),insert(v,u),d[u]++,d[v]++;
for (int i=; i<=n; i++) d[i]--;
s[]=log();
DFS(,);
for (int i=; i<=n; i++) ans[i]=s[i]+log(a[i]);
sort(ans+,ans+n+); int re=,tmp=;
for (int i=; i<=n; i++) if (ans[i]-ans[i-]<=eps) tmp++;
else re=max(re,tmp),tmp=;
re=max(re,tmp);
printf("%d\n",n-re);
return ;
}

DCrusher神一眼见过..于是他帮我艹掉了...

【BZOJ-3573】米特运输 树形DP的更多相关文章

  1. BZOJ3573:[HNOI2014]米特运输(树形DP)

    Description 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储 存一直是一个大问题.D星上有N个城市,我们将其顺序编号为1到N,1号城市 ...

  2. 【bzoj3573】[HNOI2014]米特运输 树形dp

    题目描述 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题.D星上有N个城市,我们将其顺序编号为1到N,1号城市为首都.这N个城 ...

  3. [luogu3237 HNOI2014] 米特运输 (树形dp)

    传送门 Description 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题. D星上有N个城市,我们将其顺序编号为1到N, ...

  4. BZOJ 3573米特运输

    Description 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题.D星上有N个城市,我们将其顺序编号为1到N,1号城市为 ...

  5. BZOJ 3573 米特运输

    语文题... 原来除了hash还可以取对数啊orz #include<iostream> #include<cstdio> #include<cstring> #i ...

  6. LG3237 「HNOI2014」米特运输 树形DP

    问题描述 LG3237 题解 问题转化为: 要求将这棵树,满足 结点 \(x\) 所有孩子权值相等 结点 \(x\) 权值等于所有孩子权值和 将乘法转化为 \(\log\) 加法 \(\mathrm{ ...

  7. [BZOJ 4033] [HAOI2015] T1 【树形DP】

    题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...

  8. [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)

    [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...

  9. BZOJ 2286 消耗战 (虚树+树形DP)

    给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...

随机推荐

  1. Linux的chattr与lsattr命令

    有时候你发现用root权限都不能修改某个文件,大部分原因是曾经用chattr命令锁定该文件了.chattr命令的作用很大,其中一些功能是由Linux内核版本来支持的,不过现在生产绝大部分跑的linux ...

  2. JS常用自定义方法

    1,JS生成随机数方法 getRandom(100),表示生成0-100的数 function getRandom(n){ return Math.floor(Math.random()*n+1) } ...

  3. node基础05:路由基础

    1.基础实例 //server.js var http = require("http"); var url = require("url"); var rou ...

  4. java基础:所有参数皆是按值参数

    c#中对于参数的传递,有二种处理方式,默认情况下:值类型的参数,按值传递(即:方法体内的参数是原值的副本):引用类型的参数,"加ref关键字后“,按引用传递(即:方法体内的参数,是对象的指针 ...

  5. React Native开发技术周报1

    (一).资讯 1.React Native 0.21版本发布,最新版本功能特点,修复的Bug可以看一下已翻译 重要:如果升级 Android 项目到这个版本一定要读! 我们简化了 Android 应用 ...

  6. 金山快盘+TortoiseSVN构建版本控制仓库

    金山会盘+TortoiseSVN构建版本控制仓库 之前写过一篇文章介绍 如何利用花生壳和VisualSVN Server建立远程代码仓库,具体请参照: <如何利用花生壳和VisualSVN Se ...

  7. Python2.6-原理之类和oop(上)

    来自<python学习手册第四版>第六部分 一.oop:宏伟蓝图(26章) 在这之前的部分中,经常会使用"对象"这个词,其实,到目前为止都是以对象为基础的,在脚本中传递 ...

  8. 高性能JavaScript 加载和执行

    前言 本章主要讲述如何加载脚本使得用户能有良好的用户体验,而核心内容就是JavaScript的异步加载.之前写过一篇不得不说的JavaScript异步加载,相似的内容就不多加描述,讲些不同的东西,主要 ...

  9. mvc5+ef6+Bootstrap 项目心得--WebGrid

    1.mvc5+ef6+Bootstrap 项目心得--创立之初 2.mvc5+ef6+Bootstrap 项目心得--身份验证和权限管理 3.mvc5+ef6+Bootstrap 项目心得--WebG ...

  10. 网页中三角切边还半透明,现在的设计师越来越牛,css也要跟上啊

    需求 今天在群里看到一个需求,啊这种三角形缺角怎么做啊,还带半透明阴影的. 分析 要实现这个,可以用css做三角,网上找一下代码,像这样. 由于以前没有试过border能不能带透明,所以需要试验一下. ...