Sol

数学.

跟圆上的整点一样...TA写了个积性函数的算法...以后再说吧...

\(x^2+3y^2=r^2\)

\(3y^2=r^2-x^2\)

\(3y^2=(r-x)(r+x)\)

\(y^2=\frac{1}{3}(r-x)(r+x)\)

\(d=(r-x)(r+x)\)

\(r-x=3du^2,r+x=dv^2\) 这里 \(r-x\) 和 \(r+x\) 并没有什么区别.

\(2r=d(3u^2+v^2)\)

枚举 \(d\) 和 \(u\)

感觉复杂度是\(O(n^{\frac{3}{4}})\)

但是可以跑最大数据的说.

Code

/**************************************************************
Problem: 4544
User: BeiYu
Language: C++
Result: Accepted
Time:8568 ms
Memory:1300 kb
****************************************************************/ #include<cstdio>
#include<cmath>
#include<algorithm>
#include<vector>
#include<utility>
#include<iostream>
using namespace std; typedef long long LL;
#define debug(a) cout<<#a<<"="<<a<<" "
#define mpr(a,b) make_pair(a,b) LL T,r,n,ans; inline LL in(LL x=0,char ch=getchar()){ while(ch>'9'||ch<'0') ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x; } vector<pair<LL,LL> > p; LL calc(LL d){
LL res=0,m=n/d;
// cout<<"*************"<<endl;
// debug(m),debug(d);cout<<endl;
for(LL u=1,v;u*u*3<=m;u++){
v=sqrt(m-3*u*u+0.5);
// debug(u),debug(v),debug(3*v*v+u*u),cout<<endl;
// if(u>v) break;
if(v*v+u*u*3==m&&__gcd(v*v,u*u*3)==1) res++;
// cout<<"get!",debug(d*u*u*3),debug(d*v*v),debug(d*u*u*3+d*v*v)<<endl;
// p.push_back(mpr(d*u*u*3,d*v*v));
}return res;
}
int main(){
// freopen("in.in","r",stdin);
for(T=in();T--;){
r=in(),n=r<<1,ans=0;
for(LL d=1;d*d<=n;d++) if(n%d==0){
if(d*d==n) ans+=calc(d);
else ans+=calc(d)+calc(n/d);
}
cout<<ans*4+2<<endl;
// sort(p.begin(),p.end());
// for(int i=0;i<p.size();i++) cout<<p[i].first<<" "<<p[i].second<<endl;
}
return 0;
}

  

BZOJ 4544: 椭圆上的整点的更多相关文章

  1. BZOJ 1041 圆上的整点

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1041 题意:求圆x^2+y^2=r^2上的整点. 思路:由于对称性,我们只需要计算第一象 ...

  2. [BZOJ]1045 圆上的整点(HAOI2008)

    数学题第二弹! Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 一个正整数r. Output 整点个数. Sample Input 4 ...

  3. bzoj 1041 圆上的整点 分类: Brush Mode 2014-11-11 20:15 80人阅读 评论(0) 收藏

    这里先只考虑x,y都大于0的情况 如果x^2+y^2=r^2,则(r-x)(r+x)=y*y 令d=gcd(r-x,r+x),r-x=d*u^2,r+x=d*v^2,显然有gcd(u,v)=1且u&l ...

  4. BZOJ 1041 圆上的整点 数学

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1041 题目大意:求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整 ...

  5. BZOJ4544 椭圆上的整点(数论)

    https://www.cnblogs.com/Gloid/p/9538413.html 基本思路没有太大差别.得到2n=d(a2+3b2),其中d=gcd(n-x,n+x),n-x==a2& ...

  6. bzoj4544 椭圆上的整点

    我会所有推理..... Q1:真的这么暴力的统计答案? Q2:蜜汁统计答案.... Q3:为什么不考虑3在不同的位置的情况

  7. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  8. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  9. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

随机推荐

  1. Linux学习笔记(二)2015.4.14

    笔记2.1 Q:登陆命令  A:刚开始登陆的是安装Linux时设置的普通用户,如lin,输入su - root后,成为root用户 笔记2.2 Q:切换控制台  A:ctrl+alt+F1-F7可以切 ...

  2. 【codeblocks配置】C对Mysql数据的查询

    codeblocks 编写C文件连接mysql数据库 codeblocks 设置.1.设置lib库文件: Settings->Compiler settings->Linker setti ...

  3. MacPorts安装32位动态库

    http://superuser.com/questions/63198/install-32-bits-ports-on-snow-leopard

  4. 安装docker管理工具rancher

    http://blog.csdn.net/freewebsys/article/details/51136562 docker(2):安装docker管理工具rancher rancher是一个Doc ...

  5. JNDI全面总结

    JNDI全面总结原理: 在DataSource中事先建立多个数据库连接,保存在数据库连接池中.当程序访问数据库时,只用从连接池中取空闲状态的数据库连接即可,访问结束,销毁资源,数据库连接重新回到连接池 ...

  6. phpmyadmin 链接远程mysql

    这个只是自己的笔记 新手 不记下来以后又忘记了~ 在这以前已经给mysql设置了可以远程连接的账户 版本 phpMyAdmin-4.2.11-all-languages 解压到D盘下www   本地环 ...

  7. Python开发【第十六篇】:AJAX全套

    概述 对于WEB应用程序:用户浏览器发送请求,服务器接收并处理请求,然后返回结果,往往返回就是字符串(HTML),浏览器将字符串(HTML)渲染并显示浏览器上. 1.传统的Web应用 一个简单操作需要 ...

  8. NGINX将PHP带参数的URL地址重定向二级或多级域名访问

    今天项目中有一个手机站点需要用*.m.domain.com的三级域名访问. 如手机站点的访问网址为m.domain.com,手机下面的会员实际访问地址为index.php?username=$user ...

  9. PHP使用数据库的并发问题(转)

    在并行系统中并发问题永远不可忽视.尽管PHP语言原生没有提供多线程机制,那并不意味着所有的操作都是线程安全的.尤其是在操作诸如订单.支付等业务系统中,更需要注意操作数据库的并发问题. 接下来我通过一个 ...

  10. MobClick详解

    1.使用自定义事件 使用自定义事件功能请先在网站应用管理后台(设置->编辑自定义事件)中添加相应的自定义事件后,服务器才会对相应的自定义事件请求进行处理.这里我们将提供几个简单而通用的接口: 1 ...