BZOJ 4544: 椭圆上的整点
Sol
数学.
跟圆上的整点一样...TA写了个积性函数的算法...以后再说吧...
\(x^2+3y^2=r^2\)
\(3y^2=r^2-x^2\)
\(3y^2=(r-x)(r+x)\)
\(y^2=\frac{1}{3}(r-x)(r+x)\)
\(d=(r-x)(r+x)\)
\(r-x=3du^2,r+x=dv^2\) 这里 \(r-x\) 和 \(r+x\) 并没有什么区别.
\(2r=d(3u^2+v^2)\)
枚举 \(d\) 和 \(u\)
感觉复杂度是\(O(n^{\frac{3}{4}})\)
但是可以跑最大数据的说.
Code
/**************************************************************
Problem: 4544
User: BeiYu
Language: C++
Result: Accepted
Time:8568 ms
Memory:1300 kb
****************************************************************/ #include<cstdio>
#include<cmath>
#include<algorithm>
#include<vector>
#include<utility>
#include<iostream>
using namespace std; typedef long long LL;
#define debug(a) cout<<#a<<"="<<a<<" "
#define mpr(a,b) make_pair(a,b) LL T,r,n,ans; inline LL in(LL x=0,char ch=getchar()){ while(ch>'9'||ch<'0') ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x; } vector<pair<LL,LL> > p; LL calc(LL d){
LL res=0,m=n/d;
// cout<<"*************"<<endl;
// debug(m),debug(d);cout<<endl;
for(LL u=1,v;u*u*3<=m;u++){
v=sqrt(m-3*u*u+0.5);
// debug(u),debug(v),debug(3*v*v+u*u),cout<<endl;
// if(u>v) break;
if(v*v+u*u*3==m&&__gcd(v*v,u*u*3)==1) res++;
// cout<<"get!",debug(d*u*u*3),debug(d*v*v),debug(d*u*u*3+d*v*v)<<endl;
// p.push_back(mpr(d*u*u*3,d*v*v));
}return res;
}
int main(){
// freopen("in.in","r",stdin);
for(T=in();T--;){
r=in(),n=r<<1,ans=0;
for(LL d=1;d*d<=n;d++) if(n%d==0){
if(d*d==n) ans+=calc(d);
else ans+=calc(d)+calc(n/d);
}
cout<<ans*4+2<<endl;
// sort(p.begin(),p.end());
// for(int i=0;i<p.size();i++) cout<<p[i].first<<" "<<p[i].second<<endl;
}
return 0;
}
BZOJ 4544: 椭圆上的整点的更多相关文章
- BZOJ 1041 圆上的整点
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1041 题意:求圆x^2+y^2=r^2上的整点. 思路:由于对称性,我们只需要计算第一象 ...
- [BZOJ]1045 圆上的整点(HAOI2008)
数学题第二弹! Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 一个正整数r. Output 整点个数. Sample Input 4 ...
- bzoj 1041 圆上的整点 分类: Brush Mode 2014-11-11 20:15 80人阅读 评论(0) 收藏
这里先只考虑x,y都大于0的情况 如果x^2+y^2=r^2,则(r-x)(r+x)=y*y 令d=gcd(r-x,r+x),r-x=d*u^2,r+x=d*v^2,显然有gcd(u,v)=1且u&l ...
- BZOJ 1041 圆上的整点 数学
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1041 题目大意:求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整 ...
- BZOJ4544 椭圆上的整点(数论)
https://www.cnblogs.com/Gloid/p/9538413.html 基本思路没有太大差别.得到2n=d(a2+3b2),其中d=gcd(n-x,n+x),n-x==a2& ...
- bzoj4544 椭圆上的整点
我会所有推理..... Q1:真的这么暴力的统计答案? Q2:蜜汁统计答案.... Q3:为什么不考虑3在不同的位置的情况
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
随机推荐
- GLSL Interface Block参考
http://www.opengl.org/wiki/Interface_Block_(GLSL) http://stackoverflow.com/questions/9916103/opengl- ...
- $().index() 两种用法
第一种:获得第一个 p 元素的名称和值: $(this).index() <script type="text/javascript"> $(document).rea ...
- php引入lucene方法
在引入Lucene之前,先说下PHP JAVA Bridge的概念: PHP JAVA Bridge:就是在PHP和Java之间搭建一座桥梁,利用这座桥梁在这两个实体之间建立起一个沟通渠道,在这座桥梁 ...
- jQuery简单实现iframe的高度根据页面内容自适应的方法
同域下: //注意:下面的代码是放在和iframe同一个页面中调用 $("#myiframe").load(function () { var myiframeH = $(this ...
- django_web代码更新
- 几种 Java 序列化方案的性能比较
较结果: create ser deser total size +dfl java-built-in 62 5608 29649 35257 889 514 hessian 65 3812 6708 ...
- 【转】asp.net mvc 页面跳转
1.使用传统的Response.Redirect例如string url = "/account/create";Response.Redirect(url); 1.Server. ...
- mysql 简单练习
1.查找全部学生的信息 [SQL]select * from student 受影响的行: 0 时间: 0.000s 2.查出成绩及格的所有人 [SQL]select * from student w ...
- TP框架整合Swagger UI接口文档
1.下载swagger ui:http://swagger.io/swagger-ui/: 2.在应用目录里新建一个目录xxx:如图 3.解压后把dist目录的所有文件拷贝到新建的目录里面: 4.在新 ...
- ExtJS + fileuploadfield上传文件代码
后台服务端接收文件的代码: /** * 后台上传文件处理Action */ @RequestMapping(value = "/uploadFile", method=Reques ...