Problem Link:

http://oj.leetcode.com/problems/convert-sorted-list-to-binary-search-tree/

We design a auxilar function that convert a linked list to a node with following properties:

  1. The node is the mid-node of the linked list.
  2. The node's left child is the list consisting of the list nodes before the mid-node.
  3. The node's right child is the list consisting of the list nodes after the mid-node.

The algorithm will convert the linked lists and create the tree nodes level by level until there is no linked list existing as the new-created node's children.

The python code is as follows.

# Definition for a  binary tree node
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
#
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None class Solution:
# @param head, a list node
# @return a tree node
def sortedListToBST(self, head):
if not head:
return None
root = self.find_mid(head)
q = [root]
while q:
new_q = []
for n in q:
if n.left:
n.left = self.find_mid(n.left)
new_q.append(n.left)
if n.right:
n.right = self.find_mid(n.right)
new_q.append(n.right)
q = new_q
return root def find_mid(self, head):
prev = None
slow = head
fast = head
while True:
# Fast go one step
if fast.next:
fast = fast.next
else:
break
# Slow go one step
prev = slow
slow = slow.next
# Fast go another step
if fast.next:
fast = fast.next
else:
break
# Create a TreeNode for the mid node pointed by 'slow'
node = TreeNode(slow.val)
# Set left and right children
if prev:
node.left = head
prev.next = None
else:
node.left = None
node.right = slow.next
# Return the node
return node

【LeetCode OJ】Convert Sorted List to Binary Search Tree的更多相关文章

  1. 【LeetCode OJ】Convert Sorted Array to Binary Search Tree

    Problem Link: http://oj.leetcode.com/problems/convert-sorted-array-to-binary-search-tree/ Same idea ...

  2. LeetCode OJ 108. Convert Sorted Array to Binary Search Tree

    Given an array where elements are sorted in ascending order, convert it to a height balanced BST. 把一 ...

  3. LeetCode OJ 109. Convert Sorted List to Binary Search Tree

    Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...

  4. LeetCode OJ:Convert Sorted List to Binary Search Tree(将排序好的链表转换成二叉搜索树)

    Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...

  5. LeetCode OJ:Convert Sorted Array to Binary Search Tree(将排序好的数组转换成二叉搜索树)

    Given an array where elements are sorted in ascending order, convert it to a height balanced BST. 讲一 ...

  6. 【leetcode】Convert Sorted List to Binary Search Tree

    Convert Sorted List to Binary Search Tree Given a singly linked list where elements are sorted in as ...

  7. 【leetcode】Convert Sorted Array to Binary Search Tree

    Convert Sorted Array to Binary Search Tree Given an array where elements are sorted in ascending ord ...

  8. LeetCode解题报告——Convert Sorted List to Binary Search Tree & Populating Next Right Pointers in Each Node & Word Ladder

    1. Convert Sorted List to Binary Search Tree Given a singly linked list where elements are sorted in ...

  9. Leetcode No.108 Convert Sorted Array to Binary Search Tree(c++实现)

    1. 题目 1.1 英文题目 Given an integer array nums where the elements are sorted in ascending order, convert ...

随机推荐

  1. C++ Programming language读书笔记

    C语言,结构化程序设计.自顶向下.逐步求精及模块化的程序设计方法;使用三种基本控制结构构造程序,任何程序都可由顺序.选择.循环三种基本控制结构构造. 模块结构:"独立功能,单出.入口&quo ...

  2. easyui dialog 扩展load

    $.extend($.fn.panel.methods, { showMask: function(jq, msg){ return jq.each(function(){ var pal = $(t ...

  3. R----lubridata包介绍学习

    lubridate包,非常强大,能够识别各种类型的日期.字符型和时间型数据,都是格式比较特别的你数据,在处理时,比较麻烦,但是有了lubridate这个包之后,时间处理变得非常简单,这个包函数命名简单 ...

  4. [问题2014A06] 复旦高等代数 I(14级)每周一题(第八教学周)

    [问题2014A06]  若 \(n\) 阶实方阵 \(A\) 满足 \(AA'=I_n\), 则称为正交矩阵. 证明: 不存在 \(n\) 阶正交矩阵 \(A,B\) 满足 \(A^2=cAB+B^ ...

  5. oracle mysql sqlserver数据库中的分页

    oracle: select * from (select rownum r,t1.* from tablename t1 where rownum <M+N ) t2 where t2.r&g ...

  6. gdb多进程调试

    http://blog.csdn.net/nbabn/article/details/24984501 http://blog.csdn.net/zb872676223/article/details ...

  7. css模块化策略

    为什么要模块化? 分治和复用 封装,不污染全局,不被全局污染. 继承 BEM(block:块,Element:元素,Modifier:修饰符)策略 .block__Element--Modifier ...

  8. C++用PostMessage模拟按钮点击

    有时我们可能会在某个程序中用到模拟按钮点击事件. 本文中的例子在MFC程序中调试通过,duilib的没试过,还需探索 不多说,上代码: #include "stdafx.h" #i ...

  9. 快速排序,C语言实现

    排序法里比较出名的,具体的算法看下图: 这篇博客说的通俗易懂:http://blog.csdn.net/morewindows/article/details/6684558 这是快速排序的基础,用代 ...

  10. 移动端rem处理字体的js代码

    (function (doc, win) { var docEl = doc.documentElement, resizeEvt = 'orientationchange' in window ? ...