openjudge1768 最大子矩阵[二维前缀和or递推|DP]
- 总时间限制:
- 1000ms
- 内存限制:
- 65536kB
- 描述
- 已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。
比如,如下4 * 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2的最大子矩阵是
9 2
-4 1
-1 8这个子矩阵的大小是15。
- 输入
- 输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127, 127]。
- 输出
- 输出最大子矩阵的大小。
- 样例输入
-
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1 8 0 -2 - 样例输出
-
15
- 来源
- 翻译自 Greater New York 2001 的试题
- ----------------------------------
- 降维后用1维的DP计算最大值
- 枚举y1和y2,用二维前缀和或者对枚举边递推把x处y1和y2之间的一列压成一个格
-
//二维前缀和
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
int n,a[N][N],s[N][N],ans=-1e5,f[N];
void init(){
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
s[i][j]=s[i][j-]+s[i-][j]-s[i-][j-]+a[i][j];
}
inline int get(int x,int y1,int y2){
return s[x][y2]-s[x-][y2]-s[x][y1]+s[x-][y1];
}
int main(int argc, const char * argv[]) {
scanf("%d",&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++) scanf("%d",&a[i][j]);
init();
for(int y2=;y2<=n;y2++)
for(int y1=;y1<y2;y1++)
for(int x=;x<=n;x++){
f[x]=max(,f[x-])+get(x,y1,y2);
ans=max(ans,f[x]);
}
cout<<ans;
return ;
}//c[x]递推,当前压缩的值
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
int n,a[N][N],c[N],ans=-1e5,f[N];
int main(int argc, const char * argv[]) {
scanf("%d",&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++) scanf("%d",&a[i][j]);
for(int y1=;y1<n;y1++){
memset(c,,sizeof(c));
for(int y2=y1+;y2<=n;y2++)
for(int x=;x<=n;x++){
c[x]+=a[x][y2];
f[x]=max(,f[x-])+c[x];
ans=max(ans,f[x]);
}
}
cout<<ans;
return ;
}
openjudge1768 最大子矩阵[二维前缀和or递推|DP]的更多相关文章
- Gym 102091L Largest Allowed Area 【二分+二维前缀和】
<题目链接> 题目大意:给你一个由01组成的矩形,现在问你,该矩形中,最多只含一个1的正方形的边长最长是多少. 解题分析: 用二维前缀和维护一下矩形的01值,便于后面直接$O(1)$查询任 ...
- Memento Mori (二维前缀和 + 枚举剪枝)
枚举指的是枚举矩阵的上下界,然后根据p0, p1, p2的关系去找出另外的中间2个点.然后需要记忆化一些地方防止重复减少时间复杂度.这应该是最关键的一步优化时间,指的就是代码中to数组.然后就是子矩阵 ...
- 2018 Multi-University Training Contest 4 Problem E. Matrix from Arrays 【打表+二维前缀和】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6336 Problem E. Matrix from Arrays Time Limit: 4000/20 ...
- HDU 6336.Problem E. Matrix from Arrays-子矩阵求和+规律+二维前缀和 (2018 Multi-University Training Contest 4 1005)
6336.Problem E. Matrix from Arrays 不想解释了,直接官方题解: 队友写了博客,我是水的他的代码 ------>HDU 6336 子矩阵求和 至于为什么是4倍的, ...
- 洛谷P1719 最大加权矩形 (DP/二维前缀和)
题目描述也没啥好说的,就是给你个你n*n的矩形(带权),求其中最大权值的子矩阵. 首先比较好想的就是二维前缀和,n<=120,所以可以用暴力. 1 #include<bits/stdc++ ...
- COGS1752 [BOI2007]摩基亚Mokia(CDQ分治 + 二维前缀和 + 线段树)
题目这么说的: 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如“用户C的位置在哪?”的问题,精确到毫米.但其真正高科技之处在于,它 ...
- poj-3739. Special Squares(二维前缀和)
题目链接: I. Special Squares There are some points and lines parellel to x-axis or y-axis on the plane. ...
- Good Bye 2015 C. New Year and Domino 二维前缀
C. New Year and Domino They say "years are like dominoes, tumbling one after the other". ...
- 计蒜客模拟赛D1T1 蒜头君打地鼠:矩阵旋转+二维前缀和
题目链接:https://nanti.jisuanke.com/t/16445 题意: 给你一个n*n大小的01矩阵,和一个k*k大小的锤子,锤子只能斜着砸,问只砸一次最多能砸到多少个1. 题解: 将 ...
随机推荐
- 腾讯bugly 的crash 上报和umeng的比较
说到crash上传工具,大家肯定会第一时间想到umeng,不错,umeng 是最早推出 crash 上报的工具之一,在刚推出来的时候,特别受到ios开发人员的喜爱. 因为个时候,内存是手动管理的,很容 ...
- NSString和SwiftString的区别和使用场景
当下Swift项目已经越来越多,可能会经常见到 str as NSString 或者 str as String 字符串在这两者之间的来回切换,因为有些操作用OC字符串比较方便,而有些操作则相反,熟 ...
- 操作系统开发系列—解释typedef void (*int_handler) ();
于是我换了一个思路来理解这个typedef 我们首先看常规的变量定义: int INT//定义了一个名为INT的int型变量. char *c//定义了一个名为c的char型指针变量 void(*Fu ...
- 【C语言】外部函数和内部函数
目录 [外部函数] [内部函数] 1.外部函数 定义的函数能被本文件和其它文件访问(默认). 注:不允许有同名的外部函数. 2.内部函数 定义的函数只能被本文件访问,其它文件不能访问. 注:允许 ...
- 干货之运用CALayer创建星级评分组件(五角星)
本篇记录星级评分组件的创建过程以及CALayer的运用. 为了实现一个星级评分的组件,使用了CALayer,涉及到mask.CGPathRef.UIBezierPath.动画和一个计算多角星关键节点的 ...
- 扫描项目里没有使用的图片mac工具,删除没有使用的图片以减小包的体积
[链接]netyouli/WHC_ScanUnreferenceImageToolhttps://github.com/netyouli/WHC_ScanUnreferenceImageTool
- 【代码笔记】iOS-钢琴小游戏
一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> //加入头文件 #import <AudioTool ...
- C 运算符优先级列表
- iOS开发中如何使自定义方法具有XCode插件使用提示
iOS开发中难免要安装一些好用的插件,然而插件在使用时往往只对系统的方法有提示作用,而自己写的方法不能用上插件的便利. 其实还是有办法使插件对自定义的方法有效: 1. 首先知道Xcode的插件安装路径 ...
- 控制器View的加载和内存警告流程图
控制器View的加载 内存警告