NYOJ题目64鸡兔同笼
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsAAAAIZCAIAAAAnfB5fAAAgAElEQVR4nO3dO1LjygIG4LsJchZC7IUM5YSMFZA4gYichCqvgICpSZ2fgKpJIHM24SzBN9CrW+qW1Mbm4fm+os4Z27LeUv/qbkv/2wEAFPrfZ88AAPD9CBAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFBMgAAAigkQAEAxAQIAKCZAAADFBAg4Ic+X1+dn1+cXv94+e06AUydAwOn4c39xfX52fX75MjbU66/F2YzB3uft7vb87Pr87PE5OYciDnx7AgR8J00BHPxdPTUVD4m/2/vX3hhertJDXp+fXS/u/kTDPj3mhkz/dYkkNZXLl8wIhzMJfH0CBHwn7wwQia8fI0Ck5+fyV2bqAgR8RwIEfFfVVf7t/WtdYC/u/ux2L1d1eVxlhbAFoU0PcYHdtmgMmxXqADFZwMdNJ03suHqq3r+9fw2mUs1SG020ZcB3JUDAd5UIEM2l/+Nz/WkbIMZaLrItEfsEiODfvdDw+mtxdnv/+nJ1dn31VM1Sr4cE8I0IEPDNNHUMdfH8+LwLayB2z5fXi7tfz09hgChJD+kAMTaGpqah+eLrr0V/DF3jSNC6oeUCvjUBAr6T4FcMVdl88estDBDdRX/cQNC93xXbdVne9Xwc/IhjnwAx0c1CHwg4FQIEfC+9iHD5stv1+kBkCub6i/0AEXScHAkQ4/MkQMA/SICA76a5xULUbHE+/A1FTz9A1CX9oQNELBhDv8Lj9ddCD0r4xgQI+H76v6fI/4zzuutH2au6KOxEGaaWwcDZABHeTioKEL3+lcD3I0DAN9QmhrAG4usFiOj9LkCkOmQA340AAd9PvqNDqC7+ewGiGj7qFNn0vhxUBgwDRNDoUL8zEiCaoJBJObf3r3/uL457R23gaAQI+G76lQEXt4mqhfhnGrH2pxyPV3U3iJcgAbT3aXhvgAhuShG+DN+sv1hPDvhOBAj4ZprKg8uXbLPC2fX5xa/nQZG/2/U6HwT9KJv3r+6Cior3NGH070eZaiIJ7oUFfDcCBHwr8WX9n/uLbCfE/qO9wz4Q9Zv9PgqLuz9Rw8feAWKkv0UYaHqNLMB3IkDAd1JXP2Tq/BO3e1rc/endmyH8tWe292VVzI82YQTiX4TmKjlyj+bSBwK+JQECvpfwRtED/UDQu8tk4ovJW0w2bQrj94EYVDM0T7iIRvJ2d9vGnURecSsI+K4ECCBn4kZSg59y1P7cX+jWACdPgAAAigkQAEAxAQIAKCZAAADFBAgAoJgAAQAUEyAAgGICBABQTIAAAIoJEHxhm9Viud62L7frZfN6s1qkLNfbarDWahO9bN8Nx7na7LbrZTilcA66Yf8B+yxvbt31RzwykE0G35AAwaeKg0C/QEiUOiMFUVOi1AVM80b7MhhF+7r5sF8aNcPsURr1nhARPX6ifahV7/mTpe8fzbECxGAjZD7+nE1WCTZc8/COwYNC6id3ZN7PbvrceOJFDOd7s6qPh35Uns5q8FEECD5VkAem0sJkwdAPEPUXxi5nU581p+19S6Onx+CpEC9X3UMiXq7ikmnffx/TrOXNVP/0C7nkyk0P/cmbbFc9a3T4/I7cas+8P2vTZ4QBYrPqFjgOFpuVCMHXIUDwqfoBYp1vmmgLhmER0r4fBIj2AnXkcrabeunl7Ha9nHcmf75srkSfHsPrzre72z3f762+xWrdro+qYr9X4kbl/VTROjdAhIs+bGgqqDZqv/OZm+z116IoKMzLc92mLwoQ2/WyHxni5hstNHwVAgSfap8aiF7JMXh/u15WpWqXN3L14dttPZ4jBYinx/a6NihO2o8en8vfj7QV3c0sRS+aJQiu3lcTs7xHgOiv30GAqAYY67XyyZvs7e4281TxdwSIYNOXBIhBFUMUIIJeQPD5BAg+1aAPRFR2ZAPEjBqI6frwfBX7cr1+Z4P6291tr6n7aAEiqmkYFDWFRU55gIhyS/1Gv+drYpTx1z53kz1fXp9f3AbdF9r1HPddyPVpiGuGhpt+fPhupS6Wy2H9Qj94qX7g6xAg+FSJGoigxHlHDURXlNQvo3JlUMgcvEde5fXXomkI/6QA0ZW5s2JEaYCoJxNe3UerMnnZHzbxd4N93iZ7vhxEvUSFxMtVuuzPvB9s+lnDV5VJy2V/1WjC4OsSIPhU6SaMoCx4Z4CIO+h1JWp9Dk5f0QZl17t/E9hWj39WgIiXcypFlASIaqRxV4v455Wb1WK5XOa7trTz9LmbrL+qX38tEh0qsy0dh3m/2Xr9yNX7dcbgNXweAYJPtWcfiFT1dhQggg+6Go26NjjVft/vv3ewANFdzh6tE+WMAJF/bzjC+b/CGIyr6cpQfVCNa2qztl/8vE3WL9Gj7gv5wabez9RkTASIXS+Y9QKDKgi+EAGCTzXoA9H/dLoGojWogWjfbtvXV73Lt2xpFMxBYY+858ugu1zUvf8IP+Oc0wdiFa7BqbJnn19h9AwriOYFiM/bZPFPLv/cX9QVEm93t10bRNAkkXs/t+lzw/dXSq82p41hvd9kyA98FQIEn2qfGoipcSVKoyCdRKfguDSqK9oTJdnASGn09BjeMqhX6j9fpm8MVfp+t8hTNRBhRJt1w8gvEiA+cpPtdlE/x7amJ7cpD/V+b6UMV8Fyve11ovQbDL4QAYKvJzhnxo3ByYJhMPTwijRVlz/oxRcNlLidwj/hHQGi2w79vo1hj8t0MWiTwTckQACtd/f5AP4ZAgTQEiCAuQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAoJkDAqatv7DjjHg8etQDMJkDAaQkfntB7KPrwaVq9Jy0k7Rconi9Tj4wCTocAASeqrnFIZ4QuUtT5oPf8iXfckrJ5AJgAAadNgIDTslm1zxRrHuZYR4HEc9CbB2aPSD3/ceLJlrvqodgCBJw0AQJOTJ0T6myQzgfBM9T3qYEQIAABAk5Plx1WmyAKZGog2gBxkL4PNQECTp4AAacnrCGYGSAOTICAkydAwAkKfm+R7ERZB4nterlYbfI/xdg/XAgQcPIECDg9VSSoUsJYDUT0C8/os81qopPDBAECTp4AAaemCgNV7cJogIhTw3a9XCzX2xk9JHWiBAQIODVNcIh+yJlsnejVOmzXy7ltF6MBor0PRPV39XTAhQO+DgECTsqgW2S2n2T1QZcver/iPMyvMYCTJUAAAMUECACgmAABABQTIACAYgIEAFBMgAAAigkQAEAxAQIAKCZAAADFBAgAoJgAAQAUEyAAgGICBABQTIAAAIoJEABAMQECACgmQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAolgsQT4/nZ9fnly/N65ers+vzs8fn/r9rb3e3wcDDkbxcxcMDAN/ZQQJENfDZ9dVTeiTPl9fnZ9fnZ7f3r4dfAgDgw00GiNdfi7Oq+E//VaHh7e72fFAtEaaQt7tbAQIATkUiQFQVDM3fxa+37s1sE8Zu9+f+4vrq6c/b3eNI2mjGBgB8awfqA5HSBJFh3wgA4HubGyBGBDUWwfBNo0bVB0LjBQCckukA8ef+YkaTRKrGYnFxGwzsVxgAcDLmBoiqCiFovKg6V2YCxPPl9fnZ43PvVxg6QADAiRgPEGfX5xePV6UBov33oBpjcffnQ5YKADiqYYAIf7e5Rw1E/fXH512cKprR9u8VAQB8PwfuA/FYdaisaxrido23u1s1EABwEg7fB+LlKtuzEgA4DcfpRDkYCQBwSg4TIIJmDnEBAE5fJkBUt4Fa3P2Z0wfi+bJNGKMD60QJACciESDaEFDd+imsgQh0NRB/ni9vxQIA+JfkmjAAALIECACgmAABABQTIACAYgIEAFBMgAAAigkQAEAxAQIAKCZAAADFBAgAoJgAAQAUEyA+yHa9XOQs19vPnj0AKJIMEGOFXb/E266Xi9Vmz6lvViOF52Y1v3TdrBaTczGc05HJb9fL3mf9gbfrZfV6s6pG2///YITpafXGGw2X/VKR6WUJtvhyvW0WoLcbNO/NX+ojLMs8qWltVovsPjJcQ4VK9tUC8S4781AbPahK18yccRYO/inHddnRWs/iYeP+3ANg4uwbHVGzT9PxOkl8s/QcPjWKaKscdK/brpfVos0Yw3eSXK5qNa82k9u62wajO2+0sZJDFp5v9qiBiDbr8AgfzNVyve3tbsN3glnvvh/uf4lxxms+vx6yqyNd0ie/kN6VqxFsVovVphvXdr1MjXV+DURQmh2s0J1alnpC9f/qIXpfiv85f6kPvSzThpu6emfsiJhTVCW/VLavFpm1y/bX6+hePX/NxHtJ/Kob+jsd1wX7bT4AvWMv7s1Wf+na0caTGHs1f86Ck3I7D4NDukhvtbcvm1UXfn7ova45VsPcXy1hao6+ie16OViq0Qub9gvjIw1GNbk69rhgeV+AGBzi1fXr6B5f76zVB+2e25/ZfoDt7RojF7ab1fCc3Z/PZjulj+DxCBdFw+FnufPC3BqIZuDoaNzfrGXpB4h6uokaiNKlPuiy7LPA3a4WLWjK3mec2ftq+XirQySvvaoe3S2DC5vZa2beqTzwpY/rwv32GAEiW4PZfzG7BmIw/pH6teEhGExynz2/+U535kgHiKPsdYklGtRrfbcAkUheoxc1Ix9O10FM7SmJVxmZADF2to83WnPMhsF2GCCiJNSsp+bsFw+QmPnsiWZqTSVL780qEX7DIUby+OCjfvCN01W7R8yRruIYOV8sVuuw5WHeDKc/2qZGlKmBmLfUqcnNXJboxL7HOSCa12GF2GqVn8Pc9EbX9qx9tXwZ0+1M2XNGcxpPpdHgjDR3zcyugfg+x/X8/fawTRjDsQ3WTL5MnVsDkT/bDydf73yrrrq7PBTNDRC7I+x18WHVO76S1R7hVKfrh4OTXvqoj0cXHXVhuR580H0jqDJpLw+amrFd79gaLYRHs0XvqMxtj0TZ9JEBIphStHJTe3yQSJsVFY5lpLRdrjfJE81m1S8MBqVc7uywXPa3zT4BYrNaLBbL9brLvtv1arkM9pD03AzOonMvPsI9sJ54dwmRLRRnBojmpLZaLeOTTG/guUu957JUXwtflEaIoJI6t/TJ3Tu5X3SfDdd2wb5avozb9TI+r9dTG9tLg10pOodEZ46Za2aqDO+fp7/8cV1ytB6hBiI6gPrX4XvUQMy8LAkL82rC/f1oT/MDxDH2uuQo6ikM9vuo7ip9uG23US3I+Dk2zgirKgVENYDdll6ut/EX2n/3w2xqBY9dcY1sw/kBorejH7QGYsZOnBhquV5nmzA2q8VqFZQv8Ul4cKEy40olfxTuRk80zRZMnzLGF35QvRQdl6tNdeU12DZjIy3IanHijrZ1vuSbWpZBRVG0SOHApUu9x7JEL0ZTeHadBaeqYPmTka1VTylz0Iyt7Xn7atkybtfLxXIZ77Th+bE6yW224XHWu/BeDDbInmtmt+tvvN4yfoPjunC/PXyA6GZqUFXTH+1eNRBjV3yDsFEfyfWK2aOObxcFx/EAcay9bjhsE2jiS/nB4TV5TonK+OFRn/h+O+B2vez2qd4q6g07usUGEw/U09+0NRiDoaZi2CDhpH1oDUR0cszt8eHpY/RI3KyWy2W3oKMnmrH1lBssiItdFgqXYFYNxHDOgrnrr6XwdbYGIpbYU+NYPS9AFNZAxAFita5LpnCe5y/1HsvyzgARberlet0VEOE12GCcUQkznOLI2p65r5Yt42a12sRXD0EeWC4HmXOzWixXm15cTazv2Wumt9+MXql8l+N6/n47egbeJ0AM88NoRhrO4PT4w+N3OI5oG69SXfULFysoHaNyux8gjrfXDdZAfAAHM9j7VrpojvelkQDRDRmd0OsTZ3UREpxFU/vyzACR+jxMN11OGWt6nR8sw2Nod7wAkZ7NTKrpXyMswpNH5tjcrOrWrHWQ+SavVAaLO3WlEn2SK2izOTBxjglO98O61PIaiHrSUflSHCBmLUu4NfoBYhOVRqVLvceyvLcGoh1L4oonFyDifSex82fX9ux9tXwZu7ItrNJPHdX9BaqGaS6E9lozRafyr39cF+63h66BqFZKnFSSAWIiOGVOGOFV96wAsV4HFVTvqoEIc0K6BqJyhL0uFhxS1XBFAWITdn+aqIHoXnXbol3Dzatl92uCzPG9T4AI88CwXqM9pmYZ2VGSrzL2DBDD69HBHtR+GCzxYuSndHGkjV7lTzT9b/fzcOobyWOme3OTb0wbHPRRkRAHpbHVN2fLpMuYbjKzAsTsZeldwQTbYLXKjmH2Uhcty8ECxGKxWKxWM2ogBjM+nGpmbRfsq/sFiNUqamluvjyYud7OPlaczFszBafy73FcF+23hw4Q7aIExVQyQAy+sFqvl8v1eqyYD+Y/sWenroFXq9TVzD7LVY858dVkxjzgXpdaC9H2bQ6dwcZMHG/x4T0rQPTe26yC6pU2pKWu9TILN75Au7iaL/39YcKJpzp9Mo33nyMHiEESqucvEyB60Xu96u+9m+ZU0Zz84lPs2ImmW7dRDugS/+SJJjzp9ou3eJ2023W72YQ/dIz3v/idOalwvEgbrojszr1ta7QKlmUdl1Pt6T06KJfrbclS77ksucI1O4Hh5IIBx694dsPjMjUXubVdsq/OWsZolYezGe/y/fKvd9BnZqZozcw+lX+X47pov90zQKRLimhpummNBYhqpoKr2biWJ7mKEqMJvluvs1XThBFMaeyAml6iesT9M1iYFI+w103NaRTWojNQ8ngPi9bgGEwf9dv1Kgqf3US6qcRbaxPWbzTfn1HEZo/y9Dvxt1fLZbCq49nLGZ5L3hEgxr7bjjouHZKnkGDfnZr53taKTjTDcQYfpS8tutEMIniilGvqfzJhvnujV/ItmkTfHkrNgZ/dYpNHQuaL4c6fDRDNByXL0myebVP3llxJ0RzOWup9liVduAbno1lXSs0SbaIrnt7S947sxAwGKTl/LTJrX50dkpKlQfXvbp2litb0Ljc4YRasmVH9qed8heO6m5OC/TYnu/+NHNaJnak/70FMyKeqKO4Mt/fwsr8LW8EwswPE2Imqt2P1rxOGs3K4vS6lX2LFh3Y44uQouq1RlWAjASIaWS6Y9FfH8DuTZ7KJCoOZZ8LebjZ6tPbW4XsCxORFc7OCh8uQqYHIznF64WZcqfTOMakxLnoxvhmk+lK0jOlsn995h2Vj+nhOJKr8Ok0VaPF8TG7Q5DYZX5Yo97W9JhMHcyrI5pZ6e4Bl6S9YwbfCE9a6vUBqp99cG00cgmMBo1N0VT0xufShs03VFA9SSHZO++Flas1Mmjq1fLnjumC/rQffowYiVxinS4KxGogZE0zvvalE1fWFSexG4wEi+2n+2ElW83zMXndyRi/js/tovA8M6y3i9T1ySn5XgOB7mnFJyBdl231rp7f5Tm+JvpmJSoivQIAAgK8nWR33lQgQAEAxAQIAKCZAAADFBAgAoJgAAQAUEyAAgGICBABQLBsgxu4qGt6T9avf6AIAOLyxAJG9U2bvOQAiBAD8Y95VA9EO+IXvlAUAHN57ayB2KiEA4N9ziE6UEgQA/GOGAWLqQd6JZ39qxQCAf8tIDcT8x6//cw9qB4B/XD5ADPo65AkQAPBvyQeI2T/D0IQBAP+a8k6Uw+qGoBNlkzrECQA4ZeUBYvD7zi4/NNki+xNQAOAkTAeIwa8yxtov1EAAwL/gvfeBcA8IAPgHvStAeJgWAPybPM4bACgmQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFBMgAAAigkQAEAxAQIAKCZAAADFBAgAoJgAAQAUEyAAgGICBABQLBMgni+vz89u7197b79cnV2fn12fX75kR/j6a5H4IgBwStIB4s/9xfX52eNz/O7b3e15FSAGH9Vefy3GBwAATkEiQDTVDM3f4u7PbrfbPT2en12fX/x6rmJErhKiyRD1twCAE5SsgXh6DBPA2+ufJhZUbRNV/UQ2QzQVFRoyAOBUjQSIi9vzs+urp5f7i9vzuE6i+7v49Zb4/kTCAAC+uVSAeLu7PT+7vbqsAsTu7e42HQWeHqsBhp4v9YQAgBOWChDPl9fnZ4/3d3WAqHs/NH9Xd78WZ7f3T78W2TqGrheFnhAAcIpynSibzpJtgOj+MRkgosChEgIATs/0rzBu7++KAkTdAeLqqf3HBywGAPCR8neifNuvCaMe+PF51/3yM9XREgD4vmYHiHk1EHXtRVvrUPWm1BMCAE7LQQNE/eOLsMohuoEEAHAaZveBmG7CCBsvAvV9pTRkAMDp2KMGomqeeI0DRNNPItVl0n2lAODEHCRAjKWHyozHeAIA38b8AHH52DzhoqlRqHs29DtOpjUP2fKrTgD4/vIBAgAgQ4AAAIoJEABAMQECACgmQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAolgsQ2/VysVxvw7c2q/47e9iul4vVZrfbrBZDq0031GBSm1U4xOTcHsp2vUxPtp3Hzar6vP//7NBJZbMfbIvmn1ObJ7VOxz7crPrLnZv17GaMJ5DbeJlZmFieGXvjdr2cNXPT87b75M0dm1z0T96aw0+zc1xtosmVfwib1TtXO9CXDhDDU+9qMzjh7HHYD09j2cnHg1XvjJ23Zo660Ha9XCyXmQhRlx2bVbV26kG262W6kIrLn/Sn8+cqDFv1i80qOEPOKx+asaRmYLJcLVnlhw4Qc9LsYJrpmQi3SGqthR9+yuYezu/Etz93aybzQ3LoA+X+1Appz2DhhI94nQH/pFSAqI+z6LjcrpdVAb73AZi9lI/1TuGrTXw+HDn3zrqQLNKeUxMn19zlbf/95XoTvrNavf+SND5hRos9UrjMq4HI5o7Ed8eKnOTqyZXMyfnrL8qcMcZjnRUgmgBQ7dvrxETbj1OT+oDNXb7sn7c1+wPWh2964u/P/O3yxcsTjjieyHEuM+BflQgQ0dVVfWRuVsFRv88R2H5txtVXNInBOXC5WmXGMNbIsdccxwEqedKvZi+a3WawaEnnXZLG59r0ogyC2GZVVZL0z9DTdRDDaTaNIcH485lk6mwcXpyHZXd/xUzN5qC8m7kPzggQ7SzWS5lKLb11fcDNvYeplPz5W7N7sVklag3bIeIjas6en5nNwaE5ErBVQsAhZfpATBU++xbT1eGfLzTqk3hTR5wrKZKnwbogPcTpYbtehsVwG30GJfeiumptZn27Xi3bM2g088kSZVjCbbfR2IfLUq+6wTqc3iAlfSCis3x21JvVooou2fHGK69raFmtt4NvzG3CGEkciUqi8QARjCsfusJr2cNu7mK94i83ws/bmv0AMTwgw6wcLsrknt9smmRrRfhmP2LEryUIOJxZv8KIT0jj1bq5WLAbvYqPr5GC6BCc0cMTcbpkXa63mVrqgvnsdbYaVoH2WzWqWW1L9qayZngdFJY/+bUUrohUkbhcrQbXdMNiobCLXL1Kx9ZU+pReJ75FLsI027GZyXSXgWAWwm/m8tNIh5T+wDP6QITfzNZAHH9zTxscPxMB4hO25rAGYtfbMpuuz282zESfJXszjK2W8QChFQMO58NqIDbdhVvio/gKITjNrbvzcxsrUgEiOsHvf4UxPLuMV5kmTuH13HWzEV86TV2SjtblblZ12RW9P2OJN6tgXSa05WF+sZMjDSuyg61b3l9hToCoFnxk10xvif4IEmtmm341+MbhN/d8ba1YdgX0y9xP2JqpPhC76JAJUkVi8/a/OadVsjBAvL8eCKilA0Tv6H5Hm203wkzJv+sFiN57cQ1EbjTxSeFdESIxc8nzTeI0Hla09Ktug5rb9GVpt7RhlXnm+nIYcsYWOKoyCk7M8RoeLZuSp/HBDI7N8cg45liu12M/m0y+P3gn2QciWsJsE8ZRNneBZP5OlIWfuzXTNRDRJ5kAMbLnN4txoBoIAQIOJhkg5lxy7HMMlgWIxWKxWK1m1EAM2kwP2c6Zv3iLzkTR+TDRiBudPwcFfr0GhifOeQEiHjQae3wt2a3XYb1HO0y8ekfCyZzr2ua6uas9eO+GmV0DkavCyH2aejf4xuE3d9EyV3v/dI1KOPX+v4+/NfMBYtd7c2xfT85KXLPTm6mRuqv+StKEAQcz1QeiaXVPXl+VmhMguvJhXg3Ett+1sRvNQU4T2RFtN5ttkLQmrpiimu5cidJvHIm6b0b1y6mGj+CKuKtmqM72g0Ixf+LvFqm+IM+vxYl1vAk7k3Rz1Y800fDt2/m665k1EKmZy8SBZpETWyaY7cNv7uQyjK/v0gDx0VtzMkBEtWHxUZza8+fM5vByIRymP/whLy7gX5cPEMGpIbieek8FxH5NGMm25LC9OTMrqXJyD6Pn1a6eZBHUGjfrrPcz0OoWAU1NQ/rquTvhVzXfXRKIKoMTc9QGqfZqNSgrq1IsvH5rJhQN0x9d5pJvetUMt0t/pqNSopq35KXlcPtmSt9oAplUGQyzWfW21y58OzPbB9/cY8swtFcNRLc+PmJrZvpApJahV5Kn9/wJvTXbD5CJOZAf4IASAWLY3Pr+PhCp8YzGkTBArNvyJWp+nVEfPhYwZsqdV/tFTyqxVGer5s5Cq3Xw276SOu3NoEdKvvwZrs10MZz8VrqcGa0ymLtyczM9vYX6YaC3rhK1AiPzFexz/QUaa7er98Fjb+6Jpo3NavRnHYvFovt17+dszUwNRL+nyR5TPBDtF3BIU00YfLriFnO+p39uQ390dYDqBzgsAQL4JOP9HQ5qWGUIvJMAAQAUEyAAgGICBABQTIAAAIoJEABAMQECACgmQAAAxYoDRHMTuuQzjYIHDYza8+fYmTsU7z2f0YCt+BvDWR15INF7lCzcYIbesVLHZ+gfubWRmwQAlCoMEPNuBdsrk3t3wt63AJ6MJQeJwOEAABYgSURBVL0HJE7NZz9aNM87XEe36x+5m/8hbeuHQhcU2L3HjjVjOUhUG961L7qL+BeU2iy5eU6+7zaFAEUKAsT8S+Qj1EAUPBqr8FI+ej5gXWcRP8NgOrm8t2ht8075vfoHD5HKJ7e95mjw6ss9TqANUvMeyZhfli+3ZABfWSpAxAVm9/jC9sk4U6XSwWsg6lP7SEkePgd69nwGMxtcf9bzl6t+OHgREz8ULHEhvFlVj2ZKlpOzAkRvDNGqzD3aMvuMytFnRgaFcOlERxczO5X0HOfneWxZVEIAzJcMENuotF/0Sv/gmX+Zgvw4TRj9ZwFHJ/7+GCfnc7XKfLRarRbV468Lnte4b6oIKla6QjHx/Mn4OdzRg0nDdb8ZCRDhqotfDGZ+mB8GT0pORateuV840fRiTk4lPcvZeR5fFgkCYLbJJozwDJs7v/avy4/UiTIo07fbsITvF/Zz57MbulemLNeb7SYu5ka6FKYfWzy5/L2Oe8Pq9OhSPlPIxYXxaA3EJhh19I3BquqVsqOFbr5vROFEpxdzLKkdJkBoxQCYLRMgEq0YI339UwHi4E0YcwvmgvkcjjfqA9HvHjEyF8WFzrCkylfLj5Ssm9Vyuexm4HABYk5hHMec8UV8T4AYnUpmlHsGiNHmGQACqQARnbDrM2xV9mb6FUz0DHhHX77eVMKeDnEdezC7M+dzEDQGnSibbzRfyy3mYTpG5C9+x0rW1Xq9rP6T6Ldx9ADRvDp6DUR+KplRChAAR5YIECNd0+cFiDn1BeVn6XDa2+02LDEGJfjcoDNRA9ErTw5ZAzFUHCDarNTMddXn4/BNGLM6Uab7QBwsQGSnkht8n06UmjAA5ksEiPBc3Gv5P3YNxNj5e0YsKZ7PqDQJayDaLpa90uUL1UBsVkHrSm8RupfzA0TQnzNVGverpKaXYlaACHawgv6M+eae6XkeWxadKAFmS/aB6HpALNfr8hqIxOjm38Fhn6L4aDUQE19/31wPx17ahDGY+rAX514BIlmQTjUijM92LkDkAkdBWd7biKm6sP48Z96XHwDmm/wVRiQumIMzd3zinyX9I72CkjiYfOIHl1Pz2Xwy3gdibPaCJT1ErfeeteezaiA+bG72mMzXKbG1XwAUKAsQx3WYpgAO4kOuxr/SFlf9AFDkKwUIvpSRO1+cnM0qXScGQI4AAQAUEyAAgGICBABQTIAAAIoJEABAMQECACgmQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFBMgAAAigkQAEAxAQIAKJYJEM+X1+dnt/evvbdfrs6uz8+uzy9fxsf6dnd7fnZ9fvHr7SAzCQB8LekA8ef+4vr87PE5freOBWeJj3bJIQUIADhNiQDRVDM0f4u7P7vdbvf0WGWC5yocxJUQz5fBkMMA8fprMSN2AADfRLIG4ukxSgOvf5oEUDVqVPUTUYYQIADgXzISIC5uz8+ur55e7i9uz+M6ie6viQgCBAD8S1IB4u3u9vzs9uqyChC7t7vbdK/Jp8dqgJ0AAQD/llSAeL68Pj97vL+rA0Td+6H5u7r7tTi7vX/6tQhaMaoAMfUnQADAach1omw6S7YBovtHKkD0+BUGAJy06V9h3N7fCRAAQCh/J8q3+U0Y9QBdC8UwQNRtHFN3oAIAvoPZAWKsBkKAAIB/iwABABSb3QdCEwYA0NijBuJpt9s1t3YQIADgX3TIADHjT4AAgFMwP0BcPtYtGq/NszASz/vOUgMBACckHyAAADIECACgmAABABQTIACAYgIEAFBMgAAAigkQAEAxAQIAKCZAAADFBAgAoJgAAQAUEyAAgGICBABQLBcgtuvlcr2N39usFovFajM2us1qMfja/oNvVlPT2+2262VvmDnzsF0v06Nul3uzqj7v//9Q6gmNrtPCtQkAHyYTIIbFcvXOVHEdv+qG3q6Xi85yve29s1gMytHEAImiNjlDc0LHcpmJEPUINqvFatONa7teHjQ/hAktFdaaOYk/CN7YrHrrY7gmAOBoEgGiKpqiMjss4nrF3bwAEY++G2VbQvcGHZSpm9VicDXejxj1aOPIMSya23qNRAVHLrX03y+pGEiOMyEVtYIprlZR4qm3UjcjAgQAHyhdAxFdxfcCRVWWtQXX7BqI+v3mX0FbQV0hEY5yVPLKfbNKVJAMr+3jILJdL5NZoH95HyxWtrqg0Jzyvp1soqFjs1osVutgJNEIw1WYaakZRJdgnP2UFI8uWmthCgs+6L4RVJlUiTEzSwB8K8kAEVTf5xoE4rJtRL98a0bYK4jDvgdRQOm3SeTK8s1qsVz240A8ke16uQjmOrjiDxdxs1osFsv1urvC365Xy2VQDpYXf71qheV6G46oLXdL6irqJehWRxcgopCU7u2x3UZ1SOG2DNbuYGXtdtv1qkoBwby3L5qZCb8Q1feIDgAnIxUg4ugQJIT27D+z1b53lb1ZLVaroM0i7goRfy+qJcg0mQxrIHa9Ar4bOCob+60X3QV+9341nnr2VpuqnmTffo29+pWmlK3ey9dF9GZ68FnTZtMksvaN6Du5apbBqHprpfle4vvtgNv1sls3QUaM81/iXQC+uUSAiK6Dl+t1V3S2saIrEHsX5L1SYtizIbx0zZYnE1fi4TVyorIjrkgPrtYDw3fCYjJRpHc/mtinFEwFiHoiieJ5ZPHj0NNGnaacn7uww6mMBIhuyKhao05By/W2Wbqud0umykSAADgd+ftApGsg3hUgwlrsZCnZ6ycxHMN0DUT0Sba9IfcD0USDTNBCMGwjmSnVhLHbrpfL1WrZqxdZLHKTiVdFrxmh6/8xK0BEnSomaiB6ixCmn7ruoe0Q236WmH0BAuCkjAaIxWKxWK0OVQNRFU/ZCvvUB205FdfWd59mAsRu7M1uXlKf9Gc5Lt73LAJTNRBRn4x8F8jpGohd23GkjQFTTRjDFpzJANF7b7MKKqd22/Uy6NCZXrkCBMBJGf0Z5yFrIKJys+2jGFyUb/oBomvw6CZSj6X632SAGO9dkI4xm802qC8Y/hYl3wswH0qGc1XNfTC+TNeN/NIMC/t2ZNOdKPvtNRN9IFaJviNx/4y4h2RUv9F8X4AAOClzmjDCGohKFCAmDLs2ZqcX9PVfLnoX2P1r6tXw5gyDKeTLrNHCvqt7qcvIrrAMKw16cmll0FbTjjHoARH3CCmugdj1C+1wDNn6nmZ21hM1EOHIcsGkXz0z/I4AAXBS5gWIqr4g+tXErN/jTd3sIC4p2x8TpJvs+4VwpgkjKrBzEx/tAzEIK7N+1TAjIyUn3nR8SP/SJDDnzhEA8DHyAYIi8/MDAHx/AgQAUEyAAACKCRAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFBMgAAAigkQAEAxAQIAKCZAAADFBAgAoJgAAQAUEyAAgGICBABQTIAAAIoJEABAMQECACgmQAAAxQQIAKCYAAEAFMsFiNdfi7Pr84tfb80bb3e355cvzas/9xfXwcvmnbPH59yE4hE+X16fn93ev/YGerk6uz4/6415OJ7hFwGAjzQzQFQvz66vnna73W739Hh+FieAevjHq4vr87Pgr40C0QjTaePt7rb5YiaINLMxllQAgKObXQNRh4aLX2918d+EieDTxd2fphahLeD/3F9cn1/8eutG2FQzNH+Luz/h+J+rGJGrhGgyRP0tAOATJAJEnQ/av6u79rp/8Bc1SVxfPQ2TxzBAhGljt9vt3l7/NLGgqtJoZiCTIZqKCg0ZAPBZMjUQdSEd1kDsdrtk3cNu19Q63N6/hhUVwVeSAeLi9vzs+urp5f7iNp1OEjMQzcZYVwkA4IgyAaKqUZgbIIIuEUE/hqqh4WUYIN7ubs/Pbq8uqwDR657ZH+0grASzpycEAHyOZIBo+yrOChBtk8ft/WtVtD8+N3UYyQBRDXN/VweIJn+ELSa390+/Ftk6hq4XhZ4QAPAZUgEirkV4fB70ioj7P7bF+e3968tVVM1wffWU6UTZdJZsA0T3j8kAEQUOlRAA8PESASL4lURVzPc6NCRqIG4XF9fnZ7f3d03RfvnSdKuc/BVG/a3ZAaKdh1yHDADg2HIB4uK2/zPO3S7XB+L5qYoLt1eXt210iGovep0od7tdV0VR2IRRD/z4vBt22AQAPkb6Z5xN+T33Vxi9O0s2dQztTSNmBIh5NRD1mNsZqMKKnhAA8LFSfSCen14SN5La7WYHiLBcP2SASPw2JLqBBADwMabvRJntQRn+DiIKEHWhXnVvnNsHYroJI2y8CGRuWQEAHM/8W1nvdvNqIOph+s0K82sgnoLh2wDR9JNIdZl0XykA+GCHDhB1K8OwLH/t1ygUBIix9FCZ8RhPAOBgDhsgqsaIZMeFQU+FfoC4bG9nGd2ZathxcmyG/aoTAD5CLkAAAGQJEABAMQECACgmQAAAxQQIAKCYAAEAFBMgAIBiiQDxHwDAf//9999/ZQHiLwDwzxMgAIBiAgQAUEyAAACKCRAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFDsGAHi582i9uPh99GXAAD4cIcPED9vFjc///79+/fv74cfIgQAnKKjNmFIEABwmo4aIH7eLJraCADghBwxQPy80QkCAE7TsQLE74cf4gMAnKqjBAjpAQBO2xEChKYLADh1Bw8Q3U0gGrpRAsCpcSdKAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFDsSAHi98OPzGO0qk9mPK0zfCpXPHj3iYd+AsCnONrjvB9uUgHi98OPxc3NTWHJ/zMc18+b5t+/H36IEADwGQ4eIH4//Lj5+bdX6HefLX48/P5ZGiD+Zr4hQQDA5zhaH4hhgGiL+9IA8fvhR7I1JBlSAIDj+7gA0cWG2QGi7eyQHLxqKlH/AAAf76MCRBga9mrCSFRniA8A8Ek+KECEP6loFbQ+xJlDegCAz/WBfSDCj8pK/98PP+KfYUgPAPCpDh8gBpUNgxgxK0BU94sY9oEY1mXoRgkAH82dKAGAYgIEAFBMgAAAigkQAEAxAQIAKCZAAADFBAgAoJgAAQAUEyAAgGICBABQTIAAAIoJEABAsSMFiOpRWP3HXHUPwpr7NM30eMJHbXkuJwB8vCMEiOpx2w/9x3kHT+GOH89dOJ6Z3wYAjufgAeL3w4+bn3+r4j8s5eNneP9++DFRd5Abz7yHgQMAx3S0PhC9gj982bQ/zKpFSAaRh+K2EADggD4wQPx4+F1Hh/pf+waI4I1B/QQA8AE+sgYirDB4T4AIax00aADAJ/ioANHr+TjdByIznnTNxtyZAgAO4qMCRPQrjJKWh9HxzM8hAMABHT5AdDd7qLXFf3fzhjnpYdZ4pAcA+AzuRAkAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFCsOEAAAPxXFCAAAMYJEABAMQECACgmQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFBMgAAAigkQAEAxAQIAKCZAAADFcgHi9dfi7Pr84tdb88bb3e355Uvz6s/9xXXwsnnn7PE5N6F4hM+X1+dnt/evvYFers6uz896Y054u7s9j2cPAPhAMwNE9fLs+uppt9vtdk+P52dxAqiHf7y6uD4/C/7aKBCNMJ026lhwNhpEwiEFCAD4HLNrIOrQcPHrrS7+mzARfLq4+9PUIrQJ4M/9xfX5xa+3boRNNUPzt7j7E47/uQoHcSXE82Uw5DBA1PlmInYAAAeSCBB1Pmj/ru7q6ofEX9QkcX31NEwewwARpo3dbrd7e/3TJICqSqOZgSBDCBAA8JVkaiAybQSpuofdrql1uL1/DSsqgq8kA8TF7fnZ9dXTy/3FbTqdDAKKAAEAX0MmQFQF9twAEXSJCPoxVEX+yzBAvN3dnp/dXl1WAaLXPbM/2mpaAgQAfCXJANF0mZwXINomj9v716qkf3xuyvhkgKiGub+rA0STP8IWk9v7p1+LoBWjDjQTfwIEAHyMVICIaxEenwe9IuL+j22nyNv715erqJrh+uop04my6SzZBojuH6kAkZ5Dv8IAgM+RCBDBrySqYr7XoSFRA3G7uLg+P7u9v2vqEi5fmm6Vk7/CqL8lQADA95ELEBe3/Z9x7na5PhDPT1VcuL26vG2jQ1R70etEudvtuiqKGU0Y9QBdC8UwQNQTnboDFQBwCOmfcTbl99xfYfTuLNnUMbQ3jZgRIMZqIAQIAPhaUn0gnp9eEjeS2u1mB4jwRxMCBACcnuk7UWZ7UAb9KOMAEf2ocm4fCE0YAPB9zL+V9W43rwaiHqa9Z0NuhNkaiKdgeAECAL6iQweIbEH+2v9VRXmAmPEnQADARzhsgKgaI1LPwWrvNNXqB4jL9naW0Z2pZlIDAQAfKBcgAACyBAgAoJgAAQAUEyAAgGICBABQTIAAAIoJEABAsUSA+A8A4L///vvvv7IA8RcA+OcJEABAMQECACgmQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAodqQA8fvhx2KxuPkZvfnzZlH78fB7xkhKhwcAPsgRAsTPm8Xix8PDTS9A/LxpXv9++DEjEpQODwB8mIMHiN8PP25+/q1iRK8GIhymKBFIEADwtRytD8RYgBj77BDDAwDH9QkBomrimF+fUDo8AHBsHx0gfj/8KIoDpcMDAB/gQwOE9AAAp+EDA4SmCwA4FYcPEN3dG2pVjBi8PdEtsnR4AODjuBMlAFBMgAAAigkQAEAxAQIAKCZAAADFBAgAoJgAAQAUEyAAgGICBABQTIAAAIoJEABAMQECACh26ADx++FH9NyrnzeeqAkAJ+cYAeLHjx9taBAgAOAEHSNA3Pz8edOkhjBAVLUTBc/mDh7p3Q7fTKB+P0wn4fjrL1RD98YZppvhaH4//Pjx8Lsdl/gDAEPHCRB/f97U5XZbXv9++BFHiamS+ffDj7bo/3nTluRVyR68aAYaZoVo+sEb7Zy1w4f/rqNDYq4BgNqRAkR9Hd8V4P3ivbBpoxs8HlEwmt8PPxIVG818BP+vBopnIBhrnBk0wQBAwrECxN+/VTNGUwD3C+J0fcFgVIGpABF9Ixri5uff3w83Nzc3D7+jINGTnAAAkHC8AFEV3XvXQOQqAsYCRPjdaC5+P9w8/P558+Ph97BtZWQJAIC0IwaIv78fftzcJPtABH0acvpdFEoCRK9F4sfNzY+bn3///rz5cXPT/kAknEBuCQCApGMGiLjDY/Sjijn9CsLfSPx8+DERIOI2iWD8P2/aJo3gn8OvjHfGBAAC7kQJABQTIACAYgIEAFBMgAAAigkQAEAxAQIAKCZAAADFBAgAoJgAAQAUEyAAgGICBABQrDhAAAD8VxQgAADGCRAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFBMgAAAiv0fJTHNfTXrrMkAAAAASUVORK5CYII=" alt="" />
--------------------------
经典水题,我第一次做这种题的时候完全懵逼用蛮力碰....
然而现在我终于学会列方程了....
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAPUAAAB0CAIAAADSP+NPAAATsUlEQVR4nO2dL4CyThPHJ1AoBC5QKASKhfAYKBaDxWIhWCyGu2CxGCwWghcsFoPFYng3WCgGDRaLgWIh+AsUC8FCofAGdN1TRFD8v5/4PHuyLF+W2ZnZWfAplPcFHt0BCuWGUH1T3hmqb8o7Q/VNeWfeSt/LxQwhNJmbj+4I5Vl4K323qgUAULX6oztCeRaovinvDNU35Z25q75dx0YINevfWjHPcMJsuQ5p5G1+m3WeBQCm0uwm+v209L1ZrxBCerOuaZrAMf3x8lTLUf+XZ4HlxR6aXHnRpASDOeh1NE0rFXL/SrXjBu1W419GAgBg+Ybe8+7cxSfgTvo2Bh2RZ+EvvJS1N3/G3HXsQlYi24wWYe/ACa7Xd7tRPuwlgJQrh7f21hJuzfKm7V583fi4tlnI/TvqI7T6Y7LZeNg9HvCDNp/A/fStaZqmaQeD/q0PcBvXsfOKePBIuqNF/Ktcr+9+uxH0UxZ5ohfsYh0297n/Ccy+UQfNL75uArzNCI02nj83BsRYsnPi7eo2ygAADFfSNEXeD2mu3LhHD5+J+9vfXrdRwSP+lSnshONW8grDCa12t6M3g9eA5aXlOsGkmKr97X4X1bPa7TX390LOjp3mt5YG381ORBdLWeFoGP1OXQMA7adpO67v++5qht9Bqu/74FXymd2YM7OV6/u+0WsynDAx7aBFYFyu1ptEv5vu+tKeI6zdegedaraYjUu5DAAMphb+R009/BBdhqhqJ/vnrvDXo9zYLlQG+g8wXGe4f9M2yzH+tR/ia/khPMZ/MkcdPOiN7shdL0WO7RkJTJFQUvafeLa4E1Cp9hvRcKB/M18ZhzBh7jB/m0YPj+FwtvJ9f4Y6DMP1jT+fmulAP2j2UTzIP0jMPf9KtbqmavWoD3FMUvcPFjJc0MnskXdij7dRJS6V/idC/yluR5CTHc9fLcY8y/wOD904dW1rZR28gR/Cw/zf1cLORGGYL1GJY2bPJwaKRMsrACCrxehmo/EsZicreTno40kXiu+Pug1ghUTrhDTwcjvfjarVXcfKCBy2Uva4trhbgxaqrfv28Cl4mL5Rp46/m/oglvM4LaOWyxRidrJZyQd/wsr50AauY0kc8313u3ZjTfGqsdUfVfKKrGrHbxhpB0Z48d+Yh+nbWY7xE2p0R3H+5P763jraAIDLhC5165oqKoXN3b/7xOzAVioaw4mmHdLBDzdO/IfG5z11t3xLy2JO3f4e/tZ2MvqyjqZH0+gBw413Pp97srfuWJY9Fbj5eOPEv17fq+UCoWG1rCWN3v23GOHoBCP8S8V6TV3fpPNh9t+fCdDb2IrIVVv9tK6VAEK4AJDJV0KnZtI4SRQmeycu1LdjW3qznpEEPILjZRJftbcpKKKq4gAKM7WSubpDSV3f1nSAb/AgU6CuqaEmb8BN/d+kZxBYfm45oX3Axgmw4l1SB56RxPp2HbtZK2PTOV8s94fIssOH+BSoUxeVgr3cL5L0wTRpT45JXd+OaYROgdOBfsrkDbipvtu1Em4Q4jMJIOb4T06oTKbv2aiPE0i072ZSWQfY5pRnWTS3fH+jfG0Vnq80L/ipA9LPj10v8BvY7Bnbf1vOeJbpjqKyTc66MmNiTI6v4uVlDk/M/51Y25Jz/J0SY56SBPrut6rbUeVFNL10D5jr5BURR0NqpW0qHCfnyQe1Xi2XqwSZgwHp65sIYW6D266TywilWju1SySE9AxGRFWDoQjegY81Tvz4+g6ydgCAzBK5AP2nyMuqsxvxYRs7KIgcPW9TUKTBJLG/9gb7G7xdCtNWTI1yTsoW7+8QxIy6jd2IMePlie+n52S+DnxTXrWQNczEU8arE0vfZCwm0cdu1P/VNG2wy4hAnTqw/JR4PdaLEf7lnZPLrWv54o8e/yqYW+zfKSpfQfeypRrq1FleXibM+koX7BkkcwYPWM2GeFSDhQ3q1B/4zXkg5/VtzRF2RmUK1fg/bS9G+EtabbT1egWA+R3+XUcSMw0vqwihciGbyWmXTZC30DcO0XOCwDIcmj00CkisGiMyXgb6D9Y3mtvj4a+aLz/wm/NAzunbdbIShwerZyQwuxejLvwlNMt078YCAABZLa4vfRS30HejnMN9ixlnvR3LcR93JiIZcG98AwCAktecTzXBz+h7oH/vx4kR7STC8zZrvB+HE6QeCvcArpcz7JMp1/Rrpplb6BuH6J8hBLhfBUXG28f91u6RcbVm51O17ftn9O2u5a/9Bqz4aRsE3niE0GgcLdpgN4NpPSDQfZYgRH+xyfQozPkEIXTxl/BtiNI3GeCF6L0k78tvrSRkcvbHfuBfnCh9k6YnAAjZ0t269SRMhr8cLy1Wl4SxKM9AlL7x7pWtLSfl7tatZ2AxHnAcP1583J6ud+K0vonQ3WXry5fGnCCeZXvG50a234PT+nbMo0o3zPwzBL4YD3mW0QcfVw3n/Uik72T+71dh2G3xLAiyGmyhRL0mG1kQgvJCnNa3a30d6fsx6fy3xJoNsRVWqeuVogrANLpU3G9CxPrSVY4ErhR/7te1u0CGsgEAWL47pGbJ+xDlPzlO0mdE9c0McNuc4ip+arHynDEmysVE6fsgjQEAALhE29BegvVqiRC6IN2c8vxE6ZtINd5jmDTYQXkZovRN7j58bxcK5V2Jzh/c/I1gAqS0EZhCuQ9n8mP3dWR2fOAZAJTX5Yy+ccIx5mMrxVBekTP63mfK70hWx4dCeShn9E0WcAIA5kuh6qa8EGf0TZ7RAeeOMaBQno0z+iY3tALDzf+j0zfllTijb1yzCiILElAoz0mkvr2NuisOQRadolBehSh94+JpJ8/SplCem5P6nhs9diduY26dakahPDPh+jYGbY4BABBldU5TRikvy6G+bcusloKyEEyl3qI2N+Wl2erbtsxBr1PMb0sB5rXvxZLWRaC8POD/rVOlfTdppj/lbQDf96258S8j7RTOlmsNKnHKe7C3v13H7nfbqiJj45tWZ6S8OiH+kwnqSQIHAJwgDcc0G5bywoT7Bzfr1a50N1P7vffh6hRKWpyM77jOKivxNPOE8tJExefJ2k60XhnlFTmTP4hPVwKGG19xLCCF8hDO6NvoNbFrXFSKNJpJeS2S7d/55JOeKa/IGX1vlmNS34nOv6RQHs4Zff9HnIQbbDC26A41yutwRt8HR6gBQH/80AN8KZQkJNh/GUDrs1FeiMT12R5+RjWFEp8z9TWVLyb1+XsxG7dbDW1Hu9ufLT7a5um2apqmaVrFpv7XtInS98aaHqr7uvrIi/FQkQ/PhAiQFRVNPrHyMrHCecOzAx5OlL6Piw/CFfUHj035Y97v/KpoNrYpcngOofpOnyh9HxePBfiyLvqGok79rLg/T+JuJa8Qt071nT5R+j5eXHKZwgXXWC8nwSTFCVJT78zNbbWJ9WrZbbdE/uCcTWYw+Qhz/Oidp/pOnyh956RD81vV6hdco66pAJArVUM3BG3Wq6Iqk1cRs6W33zgUnNvG8rIsslTftyNC3458dIBxrT1MegHPWX4xkC1UI+wab7NWZZ6cwqfvHSb1NgVFBGC6o3lhfwQM1Xf6ROjbPvZ0XBC8nA3bDCdZ5wqp/ClU++5RpGBhU6i2fN+n+r4pEfpeH5knzNxObDh06tq3HmeHm6vuv9TPtp3CrVc0TdNSqVNnTgcsUa+U6vumROjbywoH8pYuqBphzid2vCpYgZke0OwZyS91O7bnyF2fHuxtbEXkgOGMxbZ8EtX3TYlaX5Zz0l95527aFdIdOZg+VUXP1PQdvMM/xAeN6vumROm72yiT+r7MORgf/ae4e5OE1aWRatsyIyrLuY6NEBrPkha9SEffs2EbAGRVI28udX3PxqPo7+XEQMbkwftUNuvVZH4crnYNhM6elT4bj+Kfpx6l74PNO7fWN3a3Z0u1BH/mOgghvVnXtGJgv7O8tFiFHCKOejp2tZcb3SRdS0HfQaiS4UTT/qPiq/XtGgj1u21N03DuQ8TqpVbKBm3yleYFF7uM9WqJEOp1dE3T8uo2pPXXF+d2Ww0iEMI0e8dpfG5PbxLREraDzjshovOr3Lz8tRe4kL2hW9pz5N2DHkwSGCdqWD7L8VbRw1gsl0mipev17ZZzGQBoD2cH/3GlvrWw+2dFNXwGdy3iccJocY8qfNZ0wAmSpmkHgTzD3M5BrmOXcoeRRGClNaG24yAJALBS7qwgE51/ycwuthvOgf2DkqoleosmwSdt0Cvk/pE3T7oyDwyt++s7CFXmyo3j/7pS3+Z8ghBCCDXrFVI+WD1/8BxF2Le6sxPWdSxpl2yD38DN2lJlgeXFpt4Z9rvEK8DiOwjaMJzQaLXRoCfsM3bEsxUdzujb991Sdr/KrP0mju/EZOc8YUeL/y7+EVLHgXfZ9/35qMsAVBudjefPjYEii8Bwej9RFvtV+rbNMccAJyp2WPg2Rft7oH+f1a45QUHxvYM2od+BCxBV7WT/PCezS7cOno63WecVUcoWVuvtne9dGrsJyHXsXEYQM7mlvdU7NrHiOPTO6ttfL2f4reJEZX2DGdyxZsE7eW2hLG+T3TnRgxki8MddnbN1hb5dJ5cRAFh0wneeor7d1QzPbNG33K6VAJjxcj/H30HfK2Ivb3e08H23WshK2QKRteGp4vYOdjvZ3XIuIyp50sWM34E4C8Lz+vZ9f4Y6eOBKtXacP0lE8EamckQbaWcbpvNbK2WLP1cvGy7Xd9CfSrN3qkGq/pMN/jH8+Qrlt1b6yhTIYZlv7bxrifDM9JqVbecYYeX6qFPnhMxyvb9n155j8yRYIncbZV7KrghZBOke8aUYS9/+32S3dIMvptEDAGD5aRr1scgDxUvlMs/LZ1MDYnChvs1xnwGQssWIQtPp+gdLu5icUvw51cZdLwUWWv3xtRdLSFH5wnOzY804dh/kCiAWe8zU2pjjPnt0cN90oOPnGydbJK6+fd8f9Vv49arUO6nYKa5jZQQOUlzrEH4YgHhP0bG0M5QC80lR89HtemhC3NpKETlg+bkVttTbka6+f4pb75uQLZ1q06zkeTl359ru3npBzM0DTZWPN/LiznNy3t3YivjVHR1OKDjIzXxlnBi3kEDfvu9bcyMjbWcIUVYGxpVhArdayELaexpqpZ0jJWZCgT2HlCBvJHgSZ1+wdPWNY2Sngs3WHLHA9Mf33gpIzLtMs9lQCtVDcbo2zj/S6p1WtRBiYhFtog0wTDJ9+77vu47erOMVpygrjVYbb1lIRLBjrVBppjuVkD7NcDfZATeYv+35/658VS7z1RA2bti77TqqzMdURroQ864kS9JBkMvHZioAADRaLSHM3URW44mZyppc377v+77r2N12izi1J/G+zMnwlwFQiz+p+2PIdXpKS4XE9vdBuu/d9D3qNnY/wB6/2v1W9ZSb8rYQnkEACM0nbVULu44L2YwYuo19n4H3N/oTwYX6xji2hRD6rmhmkuIG5mTIMaDktRucr+lV8vtgWGhIJTkvo29yhpv+3Sq7Whgcww6m4ZbJTf0nZKIHK2TCXMx/sqOV4ndIFwnjJP4+smv1fQGrxVjgmL+Oz9SYDHROyv5o+WAgGFFN4xqJ9b1Zr2IKQhGJhIrB/t8tO4ZldQRZL3I4IyJlrqPKfETWzU3933ur6URuzHoxIn6DHS9DbCvy1Y3/IO6tb9uciDwryOrqBlO361gyz/YMkyhbnkpOQWr5sceku750rSkWwS+R69Ks5KPdlDfVd+nfbicB87UM83qQtUNOzc2EASPGtxXuqu/1cibyLC8qpFf/FD29Hu1ZO8KrFpRgdBzTwOOVhufxZfTtOyb+HGAH3HSgM5wYmlN5BzzH5M5pd/8CADNahIVBCAs+0Sb3++k7mLk5IWPG+PIa/RYbz8GJGXUb7D6as4/kFX90opWn13/+Syyj19E3sSs8CJqulzOeZY4dyXeDjMiEDiAZtpRy5dAfIdczuwnLNYxJaGOSO+l7J255bkW7pL3xCNXKBYjt4AxYLQyO+fMUyWABfk2MXjPE83qeF9L3vqpHodoKChM89vi7RjkXbVeQ/lx9EC7Zdq10YOH0W9U4Kez30Lc1N4icxrig+clwvW1OZZFnOOG3P/J3L8/BUxy2a/iTZ5hr3/cnqCP8TXiIzSvpmwjRV6qFbCZXfmTVzhh2BZ6JThvWXn4XlBb+lXzfnwx/5Wwhzgru5vpejIeHBapicDJD3/d9329W8rhlrlDiWcgWKgeLJ9IEF2WlVMgxnDBenNy6Fskr6XsvF4CD5KT7Q3oGw0cvTkhys9yPkZBp1CtibP/EbfU9G/WST9wAkQl3PrlTEwAAsoVy2M26OWmficIJ0hXVHV5J34Sfgb/0fU6NvWPkxNxMhi1PhSQ9e06KiMwXP8tt9Y16+rnQdzjRnhPXscuFfwAgSJlWZ3DKnrbNSbAlsVipxx+R0AumWP/kAD34aU1Lq/73ztnMdNDhXrj709Prwb3V9fAJyxh0tndf/olwJwQ7VzhBarQ6iaImD4jvUG5KEKL/pDK8UVB9vxfepqTKD8mgek6ovt8Jr1HOK/ny/ROonhaq7/fht1YSMrlbZPW8LlTfb0KnrsVMfPgoqL5fkomBiEPn3Fa1xPLSudjwJ0L1/Wp4Gy2o9sRwC9vdrFdaXmF5cZLG7uz3g+r7xSCzNWRFFTiGE+TZkoo7HKrvF+PgVCpZLV62E+JDoPp+MbzNOqhGmfmX6wye6hSAZ4Tqm/LO/B+AqivFqXzHwgAAAABJRU5ErkJggg==" alt="" />
解此方程:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAARoAAADrCAIAAAA5aM7lAAAYIElEQVR4nO2dLWDqPBSGI2pqKpjA1CAwmIqLqMEgMJiZCgwGsQlMDQKDQWyiBoPgExhMBQaD2ASmBoHBIJioqUFgMDX5RLcSoHSwhf6M95F3vSysfZqTk5OEUAAAJ0jcDQDg7wCdAOAGdAKAG9AJAG5AJwC4AZ0Af97Gg5qm5bIS+eJfqfKkt63FKu6m3RboBHiynI2VvEzOU3psrOxN3M28FdAJcGMy7IohJn0hZXMT6292U9AJ8MEa94QLXPIQpOxs6cTdZP5AJ8CB3WaVz3z2TIpaGYxMe7PzfrScz7ptPXPSbWXy6tclfwfoBDhg6BohRMzIg/Es8IKNvSorx2Mq3TAjbuetgU7g1+zsnCQIUvZtYYddtbHVfOZgEJUvu5E1MhKgE/gt83GPEGKY1rdXfszHh0GfYNl/SijoBH7LS/MxX6pdqEWjUmB9Gr7/qRQfdAK/RVPl3nh+4cWTfpvVaTBd3rRtEQOdQKR8zEasTqYVNtxKHdAJRMp2OWWTEctt3A3iCnSKk+V8Zppm3+i2jeHxz3ab0aCnaZqmaS99M2RksrDe2vqTpmlPenvtJP3xdOZjX6aHQoVLImI2HZum2Wk1zbdFwI/d7dgc1jVN07R213C2N0x+QKfocLeOORrUNE3TtKx0UEJwNAPzbvblw4nPUq11+oHOeqmVlYO50VzRvuXj8nss0/Bb2+gMfvAJ9mrRN7qapmnV8uE8ljBdHlcDjnqdo7+krJRvN30MnaJjZy/qT7rXHR3eY+F95fcqrqHXSADHz8p8Ojpy0qM7fI/+q11Or/X17QRpbv/kuV68mY1myzTNjl5nv7+YK7Evkt3GrlWKQX9J0hlMeX2dI6BTPHhzNR7MbKbbaVTJV53OS6vBPgT9yT6SeTMNkRAxI7c6L+ZokGeWQtRavXi+0kW4lcKD185Ko/P7j2s+/vO/+GPzxf/3rbMqFWRCSK7w76U3GA167Pur+tz9/a8OBDrFw2z04t9dTTe8fzR0jRCxMxh/XuR+ZBmd/CTYfDqUBFIoPfojpX67fvppCcSejz/7EzG7sDkM856r+1jXz7nvNnZZkYkgtXsj/8rX5iN0+rPomnr0HEwHHUJEw3zbX7Rd7jsd4cGLB53lLCsJarXODgDYZ+W5e5LVSAytWslrZPN19P3V37NVHr7CPVH+jBzdrVYqiBl5PDuY0WL/4LerFYROceBuCvvnIOe41F5MJYG0+xP2qsWk7z8BuVKNUupu7WIuo5S1w8H0PoIiCa4zcJZv3lhPVipc0iVsklCpPnv/2GlUxIx8Uj24+5fdj7PG81utDYFOMbBmpjL/PTbpbqPmM6cRyAvT53gvVF1Ts4XSUap3s5zunxT/JZ043EZFIYQQMWOt+KzGHXT2Y0vvTWQaOhEkc3ZcaWFbJvMXUm/3F4JOMbDPbhHSGUwHnUauWD15Ye9U2R89C7P17n3YFSR5vj7JBb80/U9TNT2qL3Edfn6cY+JRU/0VH6Jl75YzUxKCs3be+hGPm44toVP0sLGZOHmbPjwESML2OQ+FysZeyJLYGwdUbTNP1UlZNzv64sQPssxbe5HLiHwfZXez8L/aQ6Gy3awKWalcbwddy76YblvWBJ2iZmdb/r19UCr1ciHwAWUjmXq7r2tqYGaZ/bSASC8JOrlbrVQghBQrDY5R1vuw6zep1nqtl5Vzy3sji/QodIoetqS6UCicW9rA9jntdluSlcByB9PQ/csCIr2d7RXXcCS4kOc8XqCVV6t8axHYTF21WiWCNJmvQxrgcetZBOgUNexUCRGkt6AdSNg+R8wWivnMucV5YZFeApgOOoSQbKFk85WJTY1+40l0kR6FTlGzs5mbe7YywHsK951YuR7Yg30T6cXNfDoQCcnIypJ3Ye76cJWHlCueszXKSI9Cp4hZTgds12R9BD9nh0tWxemZPbS+ifRiZWVNMiKRsnlrxX+Sh02NksPyqyOijPQodIqY7nPVv7vFx2bwRYc9WIgniY307MWbnBG/3YzlpxxMWxcqjfNXRhrpUegULQd399w7lV3CQIgwWQS/3RMb6TkrK5+ViJgZn0yncuHgi5//+9DIIz0KnaKEnUoSHgqbM4U2nUbFfwjy5fq5T0tmpPfpkiANpxfuHuE2KspVXSubGg35+9DIIz0KnaKELV84uzzhMGcVsqVJYKRndNsxbqjvuzSYXKiH+9rUhIe8c03HwaZGQ7d8CYz03L7xersFudApOmqlnH93z+3gcxCfZJVzPZi7We6l+4r03ofdbKEU107F9uItl5WIIPXYovgzOOulOeyrSj7szRIIM7AM6eHpYSzgR3qmoSuVxu2WK0OniGAFCHkO2JxVSHzCjq+8sfjizcxmY9tHfz2fyqfbkF/GaPZx+S9iU6PhIS4bC3grC5czU5YLq1u+b6BTRLACnH8fszmrgJ0PfNhRgayUB72XjCSNrqxX4MXizQxcZn8J12YI2Cr78BEXWzah6cZyNpZleXqmcoIX0Cki2vX9PiHnIr3t6p0tew2JSdhnxXssjQtCrFswG/d/qhIhhNTb/Wt+m1vK7UO9ZUiodzi2JIQIUvba8qgfAJ2iYb9uNCTSY5N14bv8sNktMSOPLk2j8adS+E2RbVgPfAo7HArP6VFKu0/7KT45X3xf3LZf8oBOKcUdvLY1Teu89G66cVyK2W06raamaUbfjCw7A50A4AZ0AoAb0AkAbkAnALgBnQDgBnQCgBvQCQBuQCcAuAGdAOBGKnVaWG+maepPdfM9tArra158MJ5F1TRw16RDJ2e9fOm0NE1T8gd1jVmlGlJgw1adJvwQMfA3SIdOW2dtfjLSyv9Yo87vp+EWmdOReB3DCkAI6dDpiObj/pDGkMrrwxL97Ad8AjcmlTqxBx+FLMk8WCIqyPahTos3k/d+w/XkbCcEYiGVOrE72T8o1bAr3e2w1xEPzp/95GinVR5IS867nYKUkU6d2HHRg/JNl7BbZYL2XYBOgDsp1Yk+7n36ZlA0HXTCNzcEgBdp1YndbG0W4tNuU8xJofvu3grbtk2QBjje9LTqxM4phZwcPOg0zh36cmtM0yQgDXC86WnVid2P7txm35uVlREj2k33FOiUFjje9LTqNO61/D/HmYoHt1FRJFm5asNejkCntMDxpqdVp9no1f9zPHeHpxd4GYjBNJ6dHCmllmXxntcCN4HjTU+rTqv3oa/TY/P16KdbeyFLQlxhHrhb0qrTZjHxdSrVWoc/dBuVs+d4+2DeCXAnrTpRZ35uQ9Bxr0UEafrduXfQCXAntTq5H0xdxL7OyF68Z0SiG99PJqBmD3AntTrRnfKw98l7jN2to+YzxeozasdBLKRXJ1rO+wcKfdYZtWolSVbWcR0YBu6eFOvEHOYnzB066beJII2tVdztAvdLinViFxH2/htKAmn1xnE3Ctw1Kdap+7w/wEcQhOuOWAXgBqRYp3677uuUK1ZxyhGInRTr5JftSdnC0sGMD4ifFOv0eXizmLn1+cEAXEiKdZqNXggRB/EdCwvAEWnVyVlZuYx4SfUDAJGRSp22zlKRMygYB0kjfTptnZWaz5Y0HZk8kDRSptPGXhRzWaVcQ1ocJJDodLIsyzRNTdMsy7rk+o290p/qtUbT+VJnPZ/mslJeraIoLzJWC6vVbJT+FfwpvmyuoGn14eQt7qYlkdvqZNu2YRiqqrKrgi7Zimm3WRWynzu9Nl9HlNJRry0JJK9WHXRMkbB11k9amZxHzisjpFUPuZVO3k4JgbfhEp2G3ed9AZGU9d6OhdIjXIoGZ2UV5EyIS/7Nab4GbNRxt/DXybIsWZaP/uqyLOu6fvkWgYZ+rGK13oJK0cCGBpeA6QofnjrZtn3aI10+WDr4qMV7VvpcvZ5XVAQVUaJrn8F5Rs53XnrW4nPNy9ZZD/vG0Yl1hBBCRBPrYiilHHUyDOPob6yq6g9E8tnYK9M0/XsJouHDMr3XWF1/PRMO7LpPxy/NnKohdKC8dDrtlAwDc6yppFUrka/0Twjdp+rhDcehCpRy0enUJb7bqIPocJ2cGHYCHXPltpQ/yFVgBEV/qVPgYMm2v9mRCySW9WxEhIe5fdFql6Od1arP3Vs3L/n8SqejCSX0S2nHNPSTPUDP4m4WbPoPq6Hpb3TSdf3IJb7bPYPEw5wBGXS+4x3yQ50Cj4dAmHdvVAr7/qkzmMbdnPj5iU62bZ+6pOsXjF/B36KU83e2FqbLTdzNiZ+f6HQ6ZELXdI+4tvxl00Ohgnkn+gOdAsM8VVVv0TiQZJz52H8AsMOhx9U6ndbjIdK7Twadhnf3xWwhriMek8Z1Op1WEnkgP35/7Eq5zzxEuz+JuzFJ4TqdArsm6HSHzMc979bnio/omXyu0CkwoQed7pJdVZEJIZccS3dXXKHTuUgPOt0bfnkR6vSOuEKnwPw4dLo3dptVPiMSQnAs3SlX6HTOJeh0T7jP1SIhJFsoYaOBUy7VKWTgBJ3uB9PQCSFiJjdfowYigEt1Cpy99cG80z2wnJmSQAQpizMWzsFHJ9SS/3k263kuIxJBGr0t4m5LcuGjEyEp200WXMVusy7mMoSIvfEs7rYkGugEvsHdOpVijhChM0D1wzdw0wnZiL/JbqOVFXLBZiyAQicQhrttVFVCSK3Vi7sp6YCbTshG/DW+XLp8T5XpoHPRLkh/l0t1siwLOt0RvkuNzoWTtfPpKCOS/uSu8358qiI8btdKECm7Ta1SJIRUaq3vq8Xd7dg09XqVECI8FDb3XSlxhQPnVmdAp7+Eu3W83MMPeGy+xt38mLnCgXMHzPggG5F2dhu7Usz9zCVCiGnd+2INPgs0oNMfYGMv1Xw2/BaH8JAvYx3hFTohufe38fd++BmNziDubxA/1w14oBMAIfDZKwI6AUCv1Sk8GwGdwJ3DZ2Mw6AQAvVYnrHoCIISr516hEwDngE4AcONqnUKyEZjGBXcOT51wJg24c7jpJMvyLdoHQIrgphP2BgOAm06I9ADgoxO6JgAol9MHZVlG1wQAvVanwB0jkB8HwOO3JbCYugXA5wqdTrsmhHkAsPx86xW4BMARl+p0FObBJQBOuUgnuATAJXyjk23bR0fiapoGlwAIJEwn0zSPxkuYrgUghGCdLMs66pRUVUWnBEA4BzpZlqXr+mkGz7KsuNoHQIoglFLDMAIr8VRVRcUDAJdDaFCtg67rCO0AuJZgnWRZNgwj7rYBkDLCgj1ZltFNAXA5F6Ui0FMBcAnBiXLTNE8T5cjvARBO2DSuYRiYxgXgclBkBAA3UAILADcuXaBx1EfBKABOuVQn27axfBCAcLC4HQBuXLf1ylHIR7D1CgAMHI5LQ5ksAB4czndCyAeABzZVBoAb3Lb8v0XjAEgX3HRCmSwA3HRSVfUW7QMgReAwTwC4gaOmAeDG1TqdzuT6YEoX3Dkc5p2gEwAe1+lk2zZ0AuAcHIqMoBMAHtfppOs6dALgHL+tKIdOAPhcp1OIS9AJgF8tH4ROALBcoVN4HoJgGhfcPVfoFFIPAZ0AoHx1ul0rAUgFVzgQ7hJ0AoCbTshDAHCpTt/mIaATANx0Qh4CAOgEADe46XTTVgKQCqATANzgoxPyEABQ6AQARy7VKbz+FXkIACivaVzoBAC9Sqej49KgEwBHXKFTyMp26AQA5bXeCToBQHktbodOAFBeOxlBJwAor20rcRoNAPQHmyoHdlA4jQYA+gOdznVQt2gcAOniJxoYhoF4D4BTftirnG7DIssy35adsl7OTdNsNRuaVhWJOJjOz135ZvaVvEwIkfPK2yLWQ9x2G9M0TdNsNmqaphVy2ZfR7PQqazqqaVWREEJIXlHHs2X0LQ1ktbBM02zrT5qmyRnxqTsMudhevBVyWUJIpdbc7CJrY4L4eZB2WiRxqw5qs6qWAzZzFiR5YW9Prt51Go/sZVml6t6kWWHMp6OyqgTExMLDcnPQHGe9fCwVji8TM/OP068WHStr8q+QC2p+3jnviabuH4nH5muE7U0KP9fJtu1ToyzL4ti4TzYrzeOxIhz+ukqjc3jp7rl6Kp4cfffkrJfT2ZxSurQmuYy4b4p6UHq/eDNl5qcsz6H9QIS4Zv+FbaNhnrvFbjHLiqfE+T6IiV+lEEzTPDJKluWbnpDrbp0nrczeNPZl332uEkJyhX9sbxZL78TSru8bzEoynw4lgRAx0+q8rJ2tu3UqxX2HcPKmiJN+u+43TNPPxiDsNyXkYXV/8d5vM3KnfdStjaLutlzYvwY7g6n3z5ZpEEK0p653E9fLebNRqz/pK3vD/u/poBPYG/wCaRn6HmZDoMniszHL2TgjErlQWqwd/8rX5j5MDXlqo8eZj/2GFSqNc5e5W0dvPH5GEGJ+c+66vwuHBHf0Rr0Nu/7v+vfYpJS6W1uRpZKmf9sRRa3Tbp39ilBFWfVU36znuYyolDVne9Deejnvf2h3+P67PxJXXFv2v0W+HH7t1plnCMmVatE0LVHwmS+ybfv06Cdd17l8+CnuZvngj6LEnOPS1+ZjJq9ekk1avJkaZ+r2+d+7mPT9P4gXv7lbp1TIFkqPx63d2fJ+iCJaIR8aB6Xc3qfwbmdnWyIhunGPdWc8p18Dh1I3Svc9/tvHe13DEIloWqtb/KJf4g3nPHrjOaXuc7WYyRXXJ+p7wern301N3GYBtZI/rvsmuDV0jYjZ1SbeEWs8cK5msG37tArJk4pv+McOjgkh1acuxw/nx071exwhu97RYfeZiJnZ0jm9VNf23fvpq91ZL03OjLfXPPDNx6LfvPfzSYbtxzwjklqrd8VH/yFuUhxkWda50j5eXq1nI/9jBSn3cdWjERWb5dSPSQuVxnI2Es8Nir6L9KLPoBzBdrOj2ce5y56qipgt2Im8HRFw21o7wzBOx1R8VnO4Ts5//gTZTuTtG700/W/91O4WspKqBY8nv430Ytdp0Gn4/7M3Dq5HmY97JGxi6u8TRemqbdumaeq67pUm8Voc9Vzdlx2MZmsun8kXZrxB8vl8yGs7PNKjCQj2Jv2238J2f3J6gZdcVSqNRL7ZIiLFleBsNJ+YGoI9B+lHQsJe28nO6Xl4PY9Hvd0/vaDTqIiZXFDZ1x2RVp3sxYQtzlGqzxf+x8he82z8RghRqk/nmpTwnJ7HBzNYrT4fJ34W04Fw32GeR0p12mlqvqQ18pI/EChc+FaMbBByUHETWtL6baSXBHard7+Rxccm+6PPOfRaK662JYdU6jTpt4mYXdhbtozAr98JJyqdtgoT6oUljtMQ6VFK6WbhN/Oo4kHX1EyueLfZPJb06bS1F7IkeG9xdvap1Rtf8t+jCfZsi9lELXROMxWRHqWUUicXVGc06beJII0TOYcePanTaVcvK7JS8Z7g5XTgP4snwcbOshZxtJDSw7Ry+BRzKiI9SunB+ouvOiN78Z4RSfNlFHPTEkPKdBq9NIkgTf0FttuVH1IJ2X9snDQddGSlGlfkxNRACZNFQA3EJ+zs2Vekt9usy6VyAmOnqvLw1dSH1Y66W0fNZ4rV58Q1ND7SpNNyZkrCcU6cfXCny8/hk7OcZSVpPD87eX9TXGfuOyLlyyFPG9u7fkV6bvNRTWDenx4WvM8+drpWCiw+vGeSq9Og+ywQIucV831BKV3Pp3JGVMr1o7vXa9X8e+zNh9jLWT4rxfhEstmO8GVLbOMbnQGltN+uFyuNZD6hrVrJb22tViNiZjpP4ux5jCRUp+3qnZ0CLVcfJYEEvgtX70PmQrGqVUVCyrVWjBEIOxwKL9doVPa7RChlrdOs5YoVJ3lhnge7upEQwTAD9pC5c9KhEyEkIysLOygV7m6U7MF2C5VaK863u7vxZ8OEh0L4MgW2CokQklerdoJjp2H3+cJe925JqE6Uup3GvoS5rD2FPGefmy4QQgSpZcQ86tisLH9dYetlEH4xExaKT+3XpHZLn/hle4kNR2MnsTpRSulyPjNNc7k+nxn7wptNWjvpKxjzvmOSOyUfb2WxrJQTG47GTqJ1Aomi365L2cIyhe+syIBO4CKmw64oZZHKCwc6ge+xJn1RkIbnd7EGHtAJfIM1GUiC0B1O425ICoBOIIzp6PVud/n6AdAJfDId9eSMKEjZr42W3H674ZdrgEuAToBSSj/mY38uvFxv++d6wKWrgE6AUm+vyWME3cDKi+uAToDSwwIiQoiUzQ0n977xww+AToBSSt2tU6sUCSFyXml3jTQUaSQR6AQAN6ATANyATgBwAzoBwA3oBAA3oBMA3Pgf1rC0TUB4ztgAAAAASUVORK5CYII=" alt="" />
排除掉小数和负数,得到的就是解。
AC代码:
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int times=sc.nextInt();
while(times-->0){
int n=sc.nextInt();
int m=sc.nextInt();
if(m-2*n<0 || (m-2*n)%2!=0){
System.out.println("No answer");
}else{
int y=(m-2*n)/2;
int x=n-(int)y;
System.out.println(x+" "+(int)y);
}
} } }
题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=64
NYOJ题目64鸡兔同笼的更多相关文章
- OpenJudge计算概论-鸡兔同笼【新版题目,简单计算级别】
/*====================================================================== 鸡兔同笼 总时间限制: 1000ms 内存限制: 65 ...
- nyoj 鸡兔同笼
鸡兔同笼 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描述 已知鸡和兔的总数量为n,总腿数为m.输入n和m,依次输出鸡和兔的数目,如果无解,则输出"No an ...
- Open Judge 2750 鸡兔同笼
2750:鸡兔同笼 ...
- C语言程序设计100例之(1):鸡兔同笼
例1 鸡兔同笼 [问题描述] 一个笼子里面关了鸡和兔子(鸡有2 只脚,兔子有4 只脚,没有例外).已知笼子里面脚的总数a,问笼子里面至少有多少只动物,至多有多少只动物? [输入数据] 第1 行是测 ...
- d037: 鸡兔同笼
内容: 鸡兔同笼中头的总数,脚的总数,求鸡兔各多少只 输入说明: 一行两个整数分别表示头.脚总数(保证有解,当然有可能解为0) 输出说明: 一行两个整数,分别表示鸡.兔的只数 输入样例: 20 4 ...
- python_鸡兔同笼问题
鸡兔同笼问题 -- 今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? --鸡和兔在一个笼子里,从上面数,有35个头:从下面数,有94只脚.问笼中各有几只鸡和兔 如何逻辑整理? -- 鸡头和兔子 ...
- POJ 2750 鸡兔同笼
参考自:https://www.cnblogs.com/ECJTUACM-873284962/p/6414781.html POJ 2750鸡兔同笼 总时间限制:1000ms 内存限制:65536kB ...
- 鸡兔同笼问题(Java)
问题描述:编程解决鸡兔同笼问题,笼子中鸡兔共有35只,94只脚,求有鸡和兔各有几只 我的代码: /** * 鸡兔同笼问题 * @author Administrator * */ public cla ...
- 计算概论(A)/基础编程练习1(8题)/5:鸡兔同笼
#include<stdio.h> int main() { // 鸡兔同笼中脚的总数:a < 32768 int a; scanf("%d", &a); ...
随机推荐
- 解决Button设置disabled后无法执行后台代码问题
一.开始调式下面的程序,发现Button在js中设置disabled后无法执行后台代码(btnsave_Click)问题 <asp:Button ID="btnsave" r ...
- 小技巧-a标签去除蓝圈
可以看到,蓝色的边框破坏了页面的整体美感,很多时候我们都是不需要的.通过设置相应的css可以去除点击过后的蓝色边框. map area { outline: none; } 效果如图,点击过后厌人的蓝 ...
- windowSoftInputMode属性讲解
windowSoftInputMode属性讲解(下面这段内容我参考别人的博客,并加入我的一些意见) 我们从这个属性的名称中,可以很直观的看出它的作用,这个属性就是来设置窗口软键盘的交互模式的.andr ...
- Android解析服务器Json数据实例
Json数据信息如下: { "movies": [ { "movie": "Avengers", "year": 201 ...
- Apache 配置参考
1.什么是Apache ? Apache,是一种开放源码的HTTP服务器,可以在大多数操作系统中运行,由于其多平台和安全性所以被广泛使用,是目前最流行的Web服务器软件之一.Apache 起初由 Il ...
- mysql 同步
http://dev.mysql.com/doc/refman/5.5/en/replication-howto.html http://blog.csdn.net/mycwq/article/det ...
- Ext 下拉列表模糊搜索
/** * Created by huangbaidong on 2016/9/18. * 楼盘通用Combo组件,支持模糊查询 * 使用案例: * { fieldLabel : '楼盘名称', xt ...
- IDEA 新建文件默认加入CVS
是要先add,不过可以设置创建的文件都默认 add的.修改默认值看下图:打开系统设置,找到 Version Control 设置选项: 在 When files are created 选项中选择第二 ...
- MY_FIRSH_MODULE
模块描述 将30个字节的内存空间模仿成设备文件.每次读写不超过30个字节. 模块加载成功之后,需建立设备文件 mknod /dev/mydev c 231 0 模块代码 #include <li ...
- C#之枚举类型
参考: http://www.cnblogs.com/an-wl/archive/2011/04/14/2015815.html 惯例先上MSDN: https://msdn.microsoft.co ...