BZOJ2186: [Sdoi2008]沙拉公主的困惑
常规数论题,利用欧拉函数的相关性质。
题求$[1,N!]$中与$M!$互质的数的个数,且$M \leq N$。然后根据欧拉函数的相关性质很容易得出这道题的答案为$\frac{\phi (M!) \times N!} {M!}$。欧拉函数并不是完全积性函数,所以$M!$的欧拉函数值并不能很容易的求出来。但是根据欧拉函数的式子,可以发现$\phi (M!)$的值其实也可以预处理出来,即$\phi(M!)=M! \prod\limits ^{P_i \in [2,M]} (1-\frac{1}{P_i})$。然后根据乘法逆元就可以预处理出全部的答案。
//BZOJ 2186 //by Cydiater //2016.10.9 #include <iostream> #include <cstdlib> #include <cstdio> #include <queue> #include <map> #include <ctime> #include <cmath> #include <string> #include <cstring> #include <algorithm> #include <iomanip> using namespace std; #define ll long long #define up(i,j,n) for(ll i=j;i<=n;i++) #define down(i,j,n) for(ll i=j;i>=n;i--) const ll MAXN=1e7+5; const ll LIM=1e7; const ll oo=1LL<<40; inline ll read(){ char ch=getchar();ll x=0,f=1; while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } ll N,M,T,mod,prime[MAXN],cnt=0,ans[MAXN],fac[MAXN]; bool vis[MAXN]; namespace solution{ void exgcd(ll a,ll b,ll &x,ll &y){ if(b==0){x=1;y=0;return;} exgcd(b,a%b,x,y); ll t=x;x=y;y=t-a/b*y; } ll inv(ll num){ ll a=num,b=mod,x,y; exgcd(a,b,x,y); while(x<0)x+=b; return x; } void pret(){ fac[1]=1; memset(vis,0,sizeof(vis)); up(i,2,LIM){ fac[i]=fac[i-1]*i%mod; if(!vis[i])prime[++cnt]=i; up(j,1,cnt){ if(prime[j]*i>LIM)break; vis[i*prime[j]]=1; if(i%prime[j]==0)break; } } ans[1]=1; up(i,2,LIM){ ans[i]=ans[i-1]; if(!vis[i])ans[i]=ans[i]*(i-1)%mod*inv(i)%mod; } } } int main(){ freopen("input.in","r",stdin); using namespace solution; T=read();mod=read(); pret(); while(T--){ N=read();M=read(); printf("%lld\n",ans[M]*fac[N]%mod); } return 0; }
BZOJ2186: [Sdoi2008]沙拉公主的困惑的更多相关文章
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
- [bzoj2186][Sdoi2008]沙拉公主的困惑_数论
沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...
- BZOJ2186 SDOI2008沙拉公主的困惑(数论)
由于n!是m!的倍数,而对于每个与m!互质且小于m!的数x,x+m!.x+2*m!……也与其互质,所以答案即为(n!/m!)*φ(m!). φ(m!)=m!*∏(1-1/pi).其中的pi即为1~m中 ...
- [bzoj2186][Sdoi2008]沙拉公主的困惑——数论
题目大意 求 \[\sum_{i = 1}^{N!} [gcd(i, M!) = 1]\] 题解 显然,题目就是求 \[N!(1-\frac{1}{p_1})(1-\frac{1}{p_2})...\ ...
- 【数论】【欧拉函数】【筛法求素数】【乘法逆元】【快速幂取模】bzoj2186 [Sdoi2008]沙拉公主的困惑
http://www.cnblogs.com/BLADEVIL/p/3490321.html http://www.cnblogs.com/zyfzyf/p/3997986.html 翻了翻题解,这两 ...
- 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数
[BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...
- 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数
[bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3303 Solved: 1129[Submit][S ...
随机推荐
- 知乎日报win10版 - 天天读报【开源】
业余时间写的一个知乎日报win10版客户端,支持收藏,评论,点赞等. 商店地址:https://www.microsoft.com/zh-cn/store/apps/%E5%A4%A9%E5%A4%A ...
- .net 估计要死在你手里了
最近不太爽,想换工作,上这些知名的招聘网站,一搜 .net 心凉了一截,很少有大公司用.net,工资也不是很高. 不用我多说什么,想必很多人应该有类似经历,只是打了牙往肚子里咽. 来两副图: 最近用滴 ...
- 搭建emacs的go编程语言环境
关于emacs就不说明了,直接切入主题.关于我的emacs配置,可以直接参考GitHub上的lienhua34/myemacs-conf. go-mode 安装 关于go-mode的安装,可以直接参考 ...
- Myeclipse 2015 stable 2.0 完美破解方法
2015-08-21 以前写了一篇<Myeclipse 2015 stable 1.0 完美破解方法>,现 在跟新一下Myeclipse 2015 stable 2.0 破解方法,此方法 ...
- matlab 画图数据导入
http://www.yiibai.com/matlab/matlab_data_import.html Python 执行py 文件: 在要执行文件处按shift右击鼠标打开cmd 命令窗口,输入: ...
- thinkphp 配置多数据库
1配置文件中配置另一数据库连接信息 例如: 'TestModelConfig' => array( //'配置项'=>'配置值' 'DB_TYPE' => 'mysql', // 数 ...
- android 调用电话功能
今天用到了打电话的功能,这要如何实现呢? 很简单 1.创建对应对的xml展示页面喝java文件 2.在manifest中添加权限 下面上代码吧: 这是布局的一部分 <LinearLayout a ...
- canvas边界与摩擦力
处理物体超出画布时的三种基本状态,复位,移除,反弹 (1)检测是否越界的核心算法 if( object.x - object.width / 2 > right || object.x + ob ...
- Java Native Method
一.什么是java native method? "A native method is a Java method whose implementation is provided by ...
- asp.net捕获全局未处理异常的几种方法
通过HttpModule来捕获未处理的异常[推荐] 首先需要定义一个HttpModule,并监听未处理异常,代码如下: public void Init(HttpApplication context ...