BZOJ 1009 【HNOI2008】 GT考试
Description
阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为0
Input
第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000
Output
阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std;
typedef long long llg; int n,m,k,nt[22],ans;
char s[22];
void gi(int &x){if(x>=k) x%=k;}
struct matrix{
int w[23][23];
matrix(){memset(w,0,sizeof(w));}
void fu(){for(int i=0;i<m;i++) w[i][i]=1;}
matrix operator * (const matrix &h)const{
matrix a;
for(int i=0;i<m;i++)
for(int j=0;j<m;j++)
for(int k=0;k<m;k++)
a.w[i][j]+=w[i][k]*h.w[k][j],gi(a.w[i][j]);
return a;
}
}A,Aa; int getint(){
int w=0;bool q=0;
char c=getchar();
while((c>'9'||c<'0')&&c!='-') c=getchar();
if(c=='-') c=getchar(),q=1;
while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar();
return q?-w:w;
} matrix mi(matrix a,int b){
matrix s; s.fu();
while(b){
if(b&1) s=s*a;
a=a*a; b>>=1;
}
return s;
} int main(){
File("a");
n=getint(); m=getint(); k=getint();
scanf("%s",s+1);
for(int i=2,j=0;i<=m;i++){
while(j && s[j+1]!=s[i]) j=nt[j];
if(s[j+1]==s[i]) j++;
nt[i]=j;
}
for(int i=0,x;i<m;i++)
for(int j=0;j<=9;j++){
x=i;
while(x && s[x+1]-'0'!=j) x=nt[x];
if(s[x+1]-'0'==j) x++;
if(x<m) A.w[i][x]++;
}
Aa=mi(A,n);
for(int i=0;i<m;i++) ans+=Aa.w[0][i],gi(ans);
printf("%d",ans);
}
BZOJ 1009 【HNOI2008】 GT考试的更多相关文章
- BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )
写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...
- BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4266 Solved: 2616[Submit][Statu ...
- bzoj 1009: [HNOI2008]GT考试 -- KMP+矩阵
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数X1X2.. ...
- [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】
题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...
- bzoj 1009 [HNOI2008]GT考试(DP+KMP+矩阵乘法)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1009 [题意] 给定一个字符串T,问长度为n且不包含串T的字符串有多少种. [思路] ...
- BZOJ 1009: [HNOI2008]GT考试(kmp+dp+矩阵优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1009 题意: 思路:真的是好题啊! 对于这种题目,很有可能就是dp,$f[i][j]$表示分析到第 ...
- bzoj 1009 [HNOI2008]GT考试——kmp+矩阵优化dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 首先想到 确保模式串不出现 就是 确保每个位置的后缀不是该模式串. 为了dp,需要记录 ...
- 题解:BZOJ 1009 HNOI2008 GT考试 KMP + 矩阵
原题描述: 阿申准备报名参加GT考试,准考证号为N位数 X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai&a ...
- bzoj 1009:[HNOI2008]GT考试
这道题机房n多人好久之前就A了…… 我到现在才做出来…… 一看就是DP+矩阵乘法,但是一开始递推式推错了…… 正确的递推式应该是二维的…… f[i][j] 表示第准考证到第 i 位匹配了 j 位的方案 ...
- BZOJ 1009 HNOI2008 GT考试 KMP算法+矩阵乘法
标题效果:给定的长度m数字字符串s.求不包括子s长度n数字串的数目 n<=10^9 看这个O(n)它与 我们不认为这 令f[i][j]长度i号码的最后的字符串j位和s前者j数字匹配方案 例如,当 ...
随机推荐
- runtime学习笔记
获取属性objc_property_t * propertys = class_copyPropertyList(clazz, &outCount); 获取属性名NSString * key ...
- JS获取浏览器名和版本信息
Navigator 对象包含有关浏览器的信息. Navigator 对象属性和方法: <html> <head> <title>JS完整获取浏览器信息</ti ...
- 荷兰国旗 Flag of the Kingdom of the Netherlands
问题描述:现有n个红白蓝三种不同颜色的小球,乱序排列在一起,请通过两两交换任意两个球,使得从左至右的球依次为红球.白球.蓝球.这个问题之所以叫做荷兰国旗,是因为将红白蓝三色的小球弄成条状物,并有序排列 ...
- 各类 HTTP 返回状态代码详解
完整版 1**(信息类):表示接收到请求并且继续处理 100——客户必须继续发出请求 101——客户要求服务器根据请求转换HTTP协议版本 2**(响应成功):表示动作被成功接收.理解和接受 200— ...
- Java并发之CyclicBarrier 可重用同步工具类
package com.thread.test.thread; import java.util.Random; import java.util.concurrent.*; /** * Cyclic ...
- Swing应用开发实战系列之五:后台日志信息前台监控器
作为一个程序设计人员,我们深知日志的重要性,对于日志的监控,我们通常不外乎采用以下两种方式:日志文件方式和后台打印方式,常规情况下,这两种日志监控方式完全可以满足我们对日志监控的需要.但是,当我们用S ...
- c++双字符常量
ascii表中 A是65,B是66,16706是A乘256+B 一些双字符的汉字也可以通过此方法转为int数字
- ZooKeeper之ZAB协议
ZooKeeper为高可用的一致性协调框架,自然的ZooKeeper也有着一致性算法的实现,ZooKeeper使用的是ZAB协议作为数据一致性的算法,ZAB(ZooKeeper Atomic Broa ...
- WIN 下的超动态菜单(一)
WIN 下的超动态菜单(一)介绍 WIN 下的超动态菜单(二)用法 WIN 下的超动态菜单(三)代码 作者:黄山松,发表于博客园:http://www.cnblogs.com/tomview/ ...
- [书目20160624]Android应用开发从入门到精通
卢海东 著 第1章 揭开神秘面纱——Android系统简介 1 1.1 认识Android系统 2 1.1.1 Android成长历程 2 1.1.2 发行版本 3 1.1.3 得到大 ...