SRM 510 2 250TheAlmostLuckyNumbersDivTwo


Problem Statement

John and Brus believe that the digits 4 and 7 are lucky and all others are not. According to them, an almost lucky number is a number that contains at most one non-lucky digit in its decimal representation. Return the total number of almost lucky numbers between a and b, inclusive.

Definition

  • ClassTheAlmostLuckyNumbersDivTwo
  • Methodfind
  • Parametersint , int
  • Returnsint
  • Method signatureint find(int a, int b)
(be sure your method is public)

Limits

  • Time limit (s)2.000
  • Memory limit (MB)64

Constraints

  • a will be between 1 and 1,000,000, inclusive.
  • b will be between a and 1,000,000, inclusive.

Test cases

  1.  
    • a4
    • b7
     

    Returns4

     
    All numbers between 4 and 7 are almost lucky.
  2.  
    • a8
    • b19
     

    Returns4

     
    Numbers 8, 9, 14 and 17 are almost lucky.
  3.  
    • a28
    • b33
     

    Returns0

     
    No almost lucky numbers here.
  4.  
    • a1234
    • b4321
     

    Returns36


This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.

 #include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <typeinfo>
#include <fstream> using namespace std;
int dp[][] , dp2[][];
int dig[] ;
int vis[] ; void init ()
{
memset (dp , , sizeof(dp)) ;
memset (dp2 , , sizeof(dp2) ) ;
for (int i = ; i < ; i ++) dp[][i] = ;
for (int i = ; i <= ; i ++ ) {
for (int j = ; j < ; j ++) {
dp[i][j] += dp[i-][] + dp[i-][] ;
}
}
int a , b , c = , d = ;
for (int i = ; i <= ; i ++) for (int j = ; j < ; j ++) dp2[i][j] = dp[i][j] ;
for (int i = ; i <= ; i ++) {
a = dp[i][] , b = dp[i][] ;
for (int j = ; j < ; j ++) {
if (!(j == || j == )) {
dp2[i][] += dp[i-][j] ;
dp2[i][] += dp[i-][j] ;
}
else if (j == ) {
dp2[i][] += c ;
dp2[i][] += c ;
}
else if (j == ) {
dp2[i][] += d ;
dp2[i][] += d ;
}
}
// printf ("dp[%d][4]=%d , dp[%d][7]=%d\n" , i , dp[i][4] , i , dp[i][7]) ;
c = dp2[i][] - a , d = dp2[i][] - b ;
}
} int cal (int x)
{
memset (dig , , sizeof(dig)) ;
memset (vis , , sizeof(vis)) ;
int ans = ;
int len = ;
int tmp = x ;
int cnt = ;
while (x) {
dig[len ++] = x % ;
x /= ;
}
for (int i = len - ; i >= ; i --) {
vis[i] = cnt ;
if (dig[i] != && dig[i] != ) cnt ++ ;
}
//for (int i = 0 ; i < dig[1] ; i ++) ans += dp[1][i] ;
// ans += 10 ;
// printf ("hahaha") ;
// printf ("%d " , vis[0]) ;
// for (int i = 1 ; i < len ; i ++) printf ("%d " , vis[i]) ; puts ("") ;
for (int i = ; i < len ; i ++) {
printf ("vis[%d]=%d:\n\n" , i , vis[i] ) ;
if (vis[i] == ) {
for (int j = ; j < dig[i] ; j ++) ans += dp2[i][j] ;
}
else if (vis[i] == ) {
for (int j = ; j < dig[i] ; j ++) if (j == || j == ) ans += dp[i][j] , printf ("dp[%d][%d]=%d\n" , i , j , dp[i][j]) ;
}
if (i == len - ) ans -= dp[i][] ;
}
printf ("ans = %d\n" , ans ) ;
if (len == ) {
ans += dp[][] ;
}
else {
ans += dp[][] ;
for (int i = ; i < len - ; i ++) {
for (int j = ; j < ; j ++) ans += dp2[i][j] ;
}
}
printf ("%d:ans = %d\n" , tmp , ans) ;
printf ("-----------------------------------\n") ;
return ans ;
} class TheAlmostLuckyNumbersDivTwo {
public:
int find(int a, int b) {
puts ("") ;
if (a > b) swap(a,b) ;
init () ;
printf ("%d ~ %d\n" , a , b) ;
// printf ("%d - %d\n" , cal(b) , cal(a-1)) ;
return cal(b+) - cal(a) ;
//return 0 ;
}
}; // CUT begin
ifstream data("TheAlmostLuckyNumbersDivTwo.sample"); string next_line() {
string s;
getline(data, s);
return s;
} template <typename T> void from_stream(T &t) {
stringstream ss(next_line());
ss >> t;
} void from_stream(string &s) {
s = next_line();
} template <typename T>
string to_string(T t) {
stringstream s;
s << t;
return s.str();
} string to_string(string t) {
return "\"" + t + "\"";
} bool do_test(int a, int b, int __expected) {
time_t startClock = clock();
TheAlmostLuckyNumbersDivTwo *instance = new TheAlmostLuckyNumbersDivTwo();
int __result = instance->find(a, b);
double elapsed = (double)(clock() - startClock) / CLOCKS_PER_SEC;
delete instance; if (__result == __expected) {
cout << "PASSED!" << " (" << elapsed << " seconds)" << endl;
return true;
}
else {
cout << "FAILED!" << " (" << elapsed << " seconds)" << endl;
cout << " Expected: " << to_string(__expected) << endl;
cout << " Received: " << to_string(__result) << endl;
return false;
}
} int run_test(bool mainProcess, const set<int> &case_set, const string command) {
int cases = , passed = ;
while (true) {
if (next_line().find("--") != )
break;
int a;
from_stream(a);
int b;
from_stream(b);
next_line();
int __answer;
from_stream(__answer); cases++;
if (case_set.size() > && case_set.find(cases - ) == case_set.end())
continue; cout << " Testcase #" << cases - << " ... ";
if ( do_test(a, b, __answer)) {
passed++;
}
}
if (mainProcess) {
cout << endl << "Passed : " << passed << "/" << cases << " cases" << endl;
int T = time(NULL) - ;
double PT = T / 60.0, TT = 75.0;
cout << "Time : " << T / << " minutes " << T % << " secs" << endl;
cout << "Score : " << * (0.3 + (0.7 * TT * TT) / (10.0 * PT * PT + TT * TT)) << " points" << endl;
}
return ;
} int main(int argc, char *argv[]) {
cout.setf(ios::fixed, ios::floatfield);
cout.precision();
set<int> cases;
bool mainProcess = true;
for (int i = ; i < argc; ++i) {
if ( string(argv[i]) == "-") {
mainProcess = false;
} else {
cases.insert(atoi(argv[i]));
}
}
if (mainProcess) {
cout << "TheAlmostLuckyNumbersDivTwo (250 Points)" << endl << endl;
}
return run_test(mainProcess, cases, argv[]);
}
// CUT end

数位dp,,,,蛮有趣的,写了我三天,还好现在是考试季。数位dp能大大减少复杂度,拿这道题来说。如果用暴力来做要O(1e6),但用数位dp来的话,只需O(70)!!!!!

但同时换来的是复杂的构造。

推荐:http://www.cnblogs.com/archimedes/p/numerical-digit-dp.html

SRM 510 2 250TheAlmostLuckyNumbersDivTwo(数位dp)的更多相关文章

  1. POJ 3689 Apocalypse Someday [数位DP]

    Apocalypse Someday Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 1807   Accepted: 87 ...

  2. 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP

    [BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...

  3. bzoj1026数位dp

    基础的数位dp 但是ce了一发,(abs难道不是cmath里的吗?改成bits/stdc++.h就过了) #include <bits/stdc++.h> using namespace ...

  4. uva12063数位dp

    辣鸡军训毁我青春!!! 因为在军训,导致很长时间都只能看书yy题目,而不能溜到机房鏼题 于是在猫大的帮助下我发现这道习题是数位dp 然后想起之前讲dp的时候一直在补作业所以没怎么写,然后就试了试 果然 ...

  5. HDU2089 不要62[数位DP]

    不要62 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  6. 数位DP GYM 100827 E Hill Number

    题目链接 题意:判断小于n的数字中,数位从高到低成上升再下降的趋势的数字的个数 分析:简单的数位DP,保存前一位的数字,注意临界点的处理,都是套路. #include <bits/stdc++. ...

  7. 数位dp总结

    由简单到稍微难点. 从网上搜了10到数位dp的题目,有几道还是很难想到的,前几道基本都是模板题,供入门用. 点开即可看题解. hdu3555 Bomb hdu3652 B-number hdu2089 ...

  8. 数位DP入门

    HDU 2089 不要62 DESC: 问l, r范围内的没有4和相邻62的数有多少个. #include <stdio.h> #include <string.h> #inc ...

  9. 数位DP之奥义

    恩是的没错数位DP的奥义就是一个简练的dfs模板 int dfs(int position, int condition, bool boundary) { ) return (condition ? ...

随机推荐

  1. WPF控件ComboBox 每个Item的ToolTip引发的异常

    介绍 首先介绍下要实现的任务.做一个下拉框,当选择每个项的时候将鼠标发在上面显示该项的ToolTip的内容(Image). 实现 Model: public class SkinInfo : Noti ...

  2. JavaWeb---总结(十)JSP标签

    一.JSP标签介绍 JSP标签也称之为Jsp Action(JSP动作)元素,它用于在Jsp页面中提供业务逻辑功能,避免在JSP页面中直接编写java代码,造成jsp页面难以维护. 二.JSP常用标签 ...

  3. SSH和SSM项目的打通各个页面的方式

    SSH项目: 这里采用的action的形式: 即在表现层为页面在action中配置一个返回值,然后在Struts.xml的配置文件中进行配置. SSM项目中,SpringMVC中利用注解来配置每个页面 ...

  4. wpf 窗体内容旋转效果 网摘

    <Window x:Class="simplewpf.chuangtixuanzzhuan"        xmlns="http://schemas.micros ...

  5. WinForm------如何跳转另一个窗口,同时关闭当前窗口

    添加一个按钮,并为按钮添加点击事件(注:Frm_Main为需要跳转的窗口名字) private void Btn_OK_Click(object sender, EventArgs e) { //打开 ...

  6. 蛋疼的vs

    这个vs2008 难用的很,要是叫我选肯定vs高版本的,vs2012或者直接vs2015

  7. re正则表达式16_managing complex regexes

    Managing Complex Regexes Regular expressions are fine if the text pattern you need to match is simpl ...

  8. JavaScript排序算法——插入排序

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. JSP 入门 HTML嵌套Java脚步 显示时间

    <%@ page import="java.util.Date"%> <%@ page language="java" contentType ...

  10. canvas入门(画圆)

    1.想在H5上画一个canvas,必须在页面上你需要的地方添加canvas标签, <canvas id="myCanvas"></canvas>   接着需 ...