#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define maxn 100005
#define inf 100000000
using namespace std;
char st[maxn];
int n,tot,last,root,sum[maxn<<],tmp[maxn<<],fa[maxn<<],son[maxn<<][],dist[maxn<<],ri[maxn<<],pos[maxn<<];
struct Tsegment{
void prepare(){tot=last=root=,memset(ri,,sizeof(ri));}
int newnode(int x){
dist[++tot]=x; return tot;
}
void add(int op,int x){
int p=last,np=newnode(dist[p]+); last=np; ri[np]=; pos[np]=op;
for (;p&&!son[p][x];p=fa[p]) son[p][x]=np;
if (p==) fa[np]=root;
else{
int q=son[p][x];
if (dist[p]+==dist[q]) fa[np]=q;
else{
int nq=newnode(dist[p]+);
memcpy(son[nq],son[q],sizeof(son[q]));
fa[nq]=fa[q],fa[q]=fa[np]=nq;
for (;p&&son[p][x]==q;p=fa[p]) son[p][x]=nq;
}
}
}
}SAM;
struct Fsegment{
int l,r,lazy,val;
}tree1[maxn*];
struct date{
void build(int k,int l,int r){
tree1[k].lazy=tree1[k].val=inf; tree1[k].l=l,tree1[k].r=r;
if (l==r) return;
int mid=(l+r)/;
build(k*,l,mid),build(k*+,mid+,r);
}
void change(int k,int l,int r,int x,int y,int z){
if (x>y) return;
if (tree1[k].lazy!=inf){
if (tree1[k*].l) pushdown(k*,tree1[k].lazy);
if (tree1[k*+].l) pushdown(k*+,tree1[k].lazy);
tree1[k].lazy=inf;
}
if (l>=x&&r<=y){
pushdown(k,z);
return;
} int mid=(l+r)/;
if (x<=mid) change(k*,l,mid,x,y,z);
if (y>mid) change(k*+,mid+,r,x,y,z);
}
void pushdown(int k,int x){
tree1[k].lazy=min(tree1[k].lazy,x);
if (tree1[k].l==tree1[k].r) tree1[k].val=min(tree1[k].val,tree1[k].lazy);
}
int query(int k,int l,int r,int x){
if (tree1[k].lazy!=inf){
if (tree1[k*].l) pushdown(k*,tree1[k].lazy);
if (tree1[k*+].l) pushdown(k*+,tree1[k].lazy);
tree1[k].lazy=inf;
}
if (l==r&&r==x) return tree1[k].val;
int mid=(l+r)>>,ans=inf;
if (x<=mid) ans=min(ans,query(k*,l,mid,x));
else ans=min(ans,query(k*+,mid+,r,x));
return ans;
}
}Tree1;
struct Ksegment{
int l,r,val,lazy;
}tree[maxn*];
struct Graph{
void build(int k,int l,int r){
tree[k].l=l,tree[k].r=r,tree[k].lazy=tree[k].val=inf;
if (l==r) return; int mid=(l+r)/;
build(k*,l,mid),build(k*+,mid+,r);
}
void change(int k,int l,int r,int x,int y,int z){
if (x>y) return;
if (tree[k].lazy!=inf){
if (tree[k*].l) pushdown(k*,tree[k].lazy);
if (tree[k*+].l) pushdown(k*+,tree[k].lazy);
tree[k].lazy=inf;
}
if (l>=x&&r<=y){
pushdown(k,z);
return;
} int mid=(l+r)>>;
if (x<=mid) change(k*,l,mid,x,y,z);
if (y>mid) change(k*+,mid+,r,x,y,z);
}
void pushdown(int k,int x){
tree[k].lazy=min(tree[k].lazy,x);
if (tree[k].l==tree[k].r) tree[k].val=min(tree[k].val,tree[k].lazy);
}
int query(int k,int l,int r,int x){
if (tree[k].lazy!=inf){
if (tree[k*].l) pushdown(k*,tree[k].lazy);
if (tree[k*+].r) pushdown(k*+,tree[k].lazy);
tree[k].lazy=inf;
}
if (l==r&&r==x) return tree[k].val;
int mid=(l+r)>>,ans=inf;
if (x<=mid) ans=min(ans,query(k*,l,mid,x));
else ans=min(ans,query(k*+,mid+,r,x));
return ans;
}
}Tree;
int main(){
scanf("%s",st+),n=strlen(st+);
SAM.prepare();
for (int i=;i<=n;i++) SAM.add(i,st[i]-'a');
memset(sum,,sizeof(sum));
for (int i=;i<=tot;i++) sum[dist[i]]++;
for (int i=;i<=tot;i++) sum[i]+=sum[i-];
for (int i=;i<=tot;i++) tmp[sum[dist[i]]--]=i;
for (int i=tot,x;i>=;i--){
x=tmp[i];
if (fa[x]) ri[fa[x]]+=ri[x];
}
ri[root]=;
Tree1.build(,,n);
Tree.build(,,n);
for (int i=;i<=tot;i++){
if (ri[i]!=) continue;
int x=pos[i],y=dist[i],z=dist[fa[i]]+;
Tree1.change(,,n,x-y+,x-z+,x); //第一棵线段树按位置,记得减
Tree.change(,,n,x-z+,x,z); //第二棵线段树按长度
}
for (int i=;i<=n;i++){
printf("%d\n",min(Tree1.query(,,n,i)-i+,Tree.query(,,n,i)));
}
return ;
}

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1396

题目大意:

做法;看到题目中所说的T在S中只出现过一次,就很容易想到用后缀自动机嘛,显然就是right值为一的状态,而且right值为一的状态只能是每次add时第一个新建的点,这很显然嘛,这就很方便记录了。然后再用线段树维护一下最小值,稍微想一下就行,当时我竟然是很快就想到了,不过我inf开小了,狂WA不止。

后缀自动机+线段树。

bzoj1396: 识别子串的更多相关文章

  1. BZOJ1396 识别子串【SAM+SegmentTree】

    BZOJ1396 识别子串 给定一个串\(s\),对于串中的每个位置,输出经过这个位置且只在\(s\)中出现一次的子串的最短长度 朴素的想法是,我们要找到那些只出现一次的子串,之后遍历每个串,把串所覆 ...

  2. bzoj千题计划318:bzoj1396: 识别子串(后缀自动机 + 线段树)

    https://www.lydsy.com/JudgeOnline/problem.php?id=1396 后缀自动机的parent树上,如果不是叶子节点,那么至少有两个子节点 而一个状态所代表子串的 ...

  3. BZOJ1396:识别子串(SAM)

    Description Input 一行,一个由小写字母组成的字符串S,长度不超过10^5 Output L行,每行一个整数,第i行的数据表示关于S的第i个元素的最短识别子串有多长. Sample I ...

  4. BZOJ-1396: 识别子串

    后缀自动机+线段树 先建出\(sam\),统计一遍每个点的\(right\)集合大小\(siz\),对于\(siz=1\)的点\(x\),他所代表的子串只会出现一次,设\(y=fa[x]\),则这个点 ...

  5. BZOJ1396: 识别子串(后缀自动机,线段树)

    Description Input 一行,一个由小写字母组成的字符串S,长度不超过10^5 Output L行,每行一个整数,第i行的数据表示关于S的第i个元素的最短识别子串有多长. Sample I ...

  6. BZOJ1396 识别子串 和 BZOJ2865 字符串识别

    字符串识别 2865: 字符串识别 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 839  Solved: 261[Submit][Status][D ...

  7. BZOJ1396 识别子串 字符串 SAM 线段树

    原文链接http://www.cnblogs.com/zhouzhendong/p/9004467.html 题目传送门 - BZOJ1396 题意 给定一个字符串$s$,$|s|\leq 10^5$ ...

  8. BZOJ bzoj1396 识别子串

    题面: bzoj1396 题解: 先建出SAM,并计算right集合大小.显然符合条件的点的right集合大小为1. 对于每个right集合为1的状态显然可以算出这些状态的pos以及maxlen和mi ...

  9. BZOJ1396: 识别子串(后缀自动机 线段树)

    题意 题目链接 Sol 后缀自动机+线段树 还是考虑通过每个前缀的后缀更新答案,首先出现次数只有一次,说明只有\(right\)集合大小为\(1\)的状态能对答案产生影响 设其结束位置为\(t\),代 ...

随机推荐

  1. 获取iframe加载完毕事件

    function IframeLoad(o,fn) { if (document.all) { o.attachEvent('onload', fn); } else { o.onload = fn; ...

  2. 增强for循环(forearch)

    增强for循环是为了简化在遍历数组需要先获得数组的长度或者在遍历集合中的元素的时候需要使用迭代器的操作. 引入时间:JDK1.5 语法格式: for(数据类型 变量 :需要迭代的数组或者集合){ } ...

  3. TinyFrame升级之一:框架概览

    由于之前的TinyFrame多于简单,并且只是说明原理,并无成型的框架出来,所以这次我把之前的知识进行了汇总,然后做出了这一版的TinyFrame框架. 整个框架的结构如下: TinyFrame.Da ...

  4. php-fpm 启动参数及重要配置详解

    约定几个目录 /usr/local/php/sbin/php-fpm /usr/local/php/etc/php-fpm.conf /usr/local/php/etc/php.ini 一,php- ...

  5. FineUI v3.3.2发布!目前最稳定版本,五年陈酿!

    关于FineUI基于 ExtJS 的专业 ASP.NET 控件库. FineUI的使命创建 No JavaScript,No CSS,No UpdatePanel,No ViewState,No We ...

  6. Java 基础【11】@注解

    1.注解简介 JDK 1.5 中引入的 java.lang.annotation 包提供注解编程支持,可以让类在编译.类加载.运行时被读取,并执行相应的处理. 在 Java EE应用的时候,总是免不了 ...

  7. [MCSM]随机搜索和EM算法

    1. 概述 本节将介绍两类问题的不同解决方案.其一是通过随机的搜索算法对某一函数的取值进行比较,求取最大/最小值的过程:其二则和积分类似,是使得某一函数被最优化,这一部分内容的代表算法是EM算法.(书 ...

  8. 基于DDD的.NET开发框架 - ABP工作单元(Unit of Work)

    返回ABP系列 ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目)”的简称. ASP.NET Boilerplate是一个用最佳实践和流行技术开发现代WEB应 ...

  9. Linux权限

    在Linux中要修改一个文件夹或文件的权限我们需要用到linux chmod命令来做,下面我写了几个简单的实例大家可参考一下. 语法如下: chmod [who] [+ | - | =] [mode] ...

  10. 【python】 [基础] 数据类型,字符串和编码

    python笔记,写在前面:python区分大小写1.科学计数法,把10用e代替,1.23x10·9就是 1.23e9                            或者 0.00012就是1 ...