LIS最长上升子序列O(n^2)与O(nlogn)的算法
动态规划
最长上升子序列问题(LIS)。给定n个整数,按从左到右的顺序选出尽量多的整数,组成一个上升子序列(子序列可以理解为:删除0个或多个数,其他数的顺序不变)。例如序列1, 6, 2, 3, 7, 5,可以选出上升子序列1, 2, 3, 5,也可以选出1, 6, 7,但前者更长。选出的上升子序列中相邻元素不能相等。
最容易想到的办法就是用一个数组f[i]保存到达第i个数的LIS
初始化f[i]=1
更新 f[i]=max{f[j]+1,f[i]|a[j]<a[i],1<=j<i}
即在第i位置前的比i小的最大的LIS+1
时间复杂度O(n^2)
#include<cstdio>
#include<iostream>//vj1098
#define ll long long
#define _max(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int N=;
int n,a[N],ans;
int f[N],g[N];
int main()
{
freopen("sample.in","r",stdin);
cin>>n;
for(int i=;i<=n;i++)
scanf("%d",&a[i]),f[i]=g[i]=;
for(int i=;i<=n;i++)
for(int j=;j<i;j++)
if(a[j]<a[i])
f[i]=_max(f[i],f[j]+);
for(int i=n;i>=;i--)
for(int j=n;j>i;j--)
if(a[j]<a[i])
g[i]=_max(g[i],g[j]+);
for(int i=;i<=n;i++)
ans=_max(ans,f[i]+g[i]-);
cout<<n-ans;
return ;
}
从蓝书和网上学到了一种更高效的O(nlogn)的算法
大概思路如下
d[i]表示以i结尾的最长的LIS的长度,则d[i]=max{0,d[j]|j<i,Aj<Ai}+1,最终答案是max{d[i]}。如果LIS中的元素可以相等,把小于号改成小于等于号即可。
假如已经计算出两个状态a,b满足Aa<Ab,且d[a]=d[b],则对于后续所有状态i(即i>a且i>b)来说,a并不会比b差——如果b满足Ab<Aa的条件,a也满足。换句话说,如果我们只保留a,一定不会丢失最优解。
这样,对于相同的d值,最需要保留A最小的一个。我们用g[i]表示d值为i的最小状态编号(如果不存在,g[i]定义为正无穷)。根据上推理可证明
g[1]<=g[2]<=g[3]<=……<=g[n]
#include<cstdio>
#include<iostream>
#define ll long long
#define _max(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int N=;
int n,k,a[N],b[N],o[N],ans,ma,mb;
int j,da[N],db[N],len,la,lb,mid;
int findpos(int *d,int l,int r,int key){
while(l<=r){
mid=(l+r)>>;
if(key>d[mid]){
if(key<=d[mid+])
return mid;
else l=mid+;
}else r=mid-;
}return ;
}
int main(){
cin>>n>>k;
for(int i=;i<=n;i++) scanf("%d",o+i);
for(int i=;i<k;i++) o[i]<o[k]?a[++la]=o[i]:la=la;
for(int i=k+;i<=n;i++) o[i]>o[k]?b[++lb]=o[i]:lb=lb;
da[]=a[],len=,j=;
for(int i=;i<=la;i++)da[a[i]>da[len]?++len:findpos(da,,len,a[i])+]=a[i];
db[]=b[],len=,j=;
for(int i=;i<=lb;i++)db[b[i]>db[len]?++len:findpos(db,,len,b[i])+]=b[i];
for(int i=la;i>=;i--)da[i]?ans+=i,i=:i=i;
for(int i=lb;i>=;i--)db[i]?ans+=i,i=:i=i;
cout<<ans+;
return ;
}
汝佳的code核心
for(int i=;i<=n;i++)g[i]=INF;
for(int i=;i<=n;i++){
int k=lower_bound(g+,g+n+,A[i])-g;
d[i]=k;
g[k]=a[i];
}
LIS最长上升子序列O(n^2)与O(nlogn)的算法的更多相关文章
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- POJ - 3903 Stock Exchange(LIS最长上升子序列问题)
E - LIS Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Descripti ...
- hdu 5256 序列变换(LIS最长上升子序列)
Problem Description 我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增.其中无论是修改前还是修改后,每个元素都必须是整数. 请输出最少需要修改多 ...
- POJ 3903 Stock Exchange (E - LIS 最长上升子序列)
POJ 3903 Stock Exchange (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...
- 动态规划模板1|LIS最长上升子序列
LIS最长上升子序列 dp[i]保存的是当前到下标为止的最长上升子序列的长度. 模板代码: int dp[MAX_N], a[MAX_N], n; int ans = 0; // 保存最大值 for ...
- POJ 1887 Testingthe CATCHER (LIS:最长下降子序列)
POJ 1887Testingthe CATCHER (LIS:最长下降子序列) http://poj.org/problem?id=3903 题意: 给你一个长度为n (n<=200000) ...
- LIS 最长递增子序列
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...
- 动态规划——E (LIS())最长上升子序列
E - LIS Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Stat ...
- LIS 最长递增子序列问题
一, 最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1< ...
随机推荐
- CC1310电源
CC1310的电源好扯,把目前遇到的问题记录一下 1 全局LDO和DCDC的输出电压问题 手册上要求的VDDR和VDDR_RF的电压范围是1.7~1.95V,但实际测试时, 在接收状态下无论是全局LD ...
- Java中Timer的用法
现在项目中用到需要定时去检查文件是否更新的功能.timer正好用于此处. 用法很简单,new一个timer,然后写一个timertask的子类即可. 代码如下: package comz.autoup ...
- Android之ProgressBar
今天复习一下以前的知识,补充一下ProgressBar控件 progressBar是进度条组件,通常用于用户展示某个耗时操作完成的进度,而不让用户感觉是程序失去了响应,从而更好地提升用户界面的友好性. ...
- RIDE安装遇到的问题及解决方法
1.按照虫师的方法,下载的wxpython3.0 ,启动robotframework-ride,无效,因为版本不一致,所以我又根据终端提示的网址:http://sourceforge.net/proj ...
- python中获取今天昨天和明天的日期
import datetime today = datetime.date.today()oneday = datetime.timedelta(days=1)yesterday = today-on ...
- Java 中extends与implements使用方法
Java 中extends与implements使用方法 标签: javaclassinterfacestring语言c 2011-04-14 14:57 33314人阅读 评论(7) 收藏 举报 分 ...
- Gradle笔记系列(一)
1.Gradle概述 Gradle是一个基于Apache Ant和Apache Maven概念的项目自动化构建工具.它使用一种基于Groovy的特定领域语言(DSL)来声明项目设置,抛弃了基于XML的 ...
- 分享一个快速测试ios软件的工具
简易IPA安装地址生成器 地址: https://www.neicexia.com/IPADistribute/Resources/index.html?fromsite#IPADistribute- ...
- 关于swap
一个小小的swap确出现了好多个版本.不断的优化,不断的发现问题: 版本一: function swap(a,b){ var temp = a; a = b; b = temp; } 这个版本对于数组 ...
- LINUX 命令定期执行可执行文件
linux命令将nodejs文件变成可执行文件 在linux中一般我们在运行node文件时用的命令为: node example.js 首先.删除文件后缀,在linux命令下添加可执行权限 mv ex ...