题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007

题意:给你n(2<=n<=10^6)个点的坐标,然后找到两个点使得他们之间的距离最小,然后输出最小距离的一半;

先把n个点按x坐标排序,然后求左边n/2个和右边n/2个的最近距离,最后合并。

首先,假设点是n个,编号为1到n。我们要分治求,则找一个中间的编号mid,先求出1到mid点的最近距离设为d1,还有mid+1到n的最近距离设为d2。这里的点需要按x坐标的顺序排好,并且假设这些点中,没有2点在同一个位置。(若有,则直接最小距离为0了)。

然后,令d为d1, d2中较小的那个点。如果说最近点对中的两点都在1-mid集合中,或者mid+1到n集合中,则d就是最小距离了。但是还有可能的是最近点对中的两点分属这两个集合,所以我们必须先检测一下这种情况是否会存在,若存在,则把这个最近点对的距离记录下来,去更新d。这样我们就可以得道最小的距离d了。

关键是要去检测最近点对,理论上每个点都要和对面集合的点匹配一次,那效率还是不能满足我们的要求。所以这里要优化。怎么优化呢?考虑一下,假如以我们所选的分割点mid为界,如果某一点的横坐标到点mid的横坐标的绝对值超过d1并且超过d2,那么这个点到mid点的距离必然超过d1和d2中的小者,所以这个点到对方集合的任意点的距离必然不是所有点中最小的。

    所以我们先把在mid为界左右一个范围内的点全部筛选出来,放到一个集合里。筛选好以后,当然可以把这些点两两求距离去更新d了,不过这样还是很慢,万一满足条件的点很多呢。这里还得继续优化。首先把这些点按y坐标排序。假设排序好以后有cnt个点,编号为0到cnt-1。那么我们用0号去和1到cnt-1号的点求一下距离,然后1号和2到cnt-1号的点求一下距离。。。如果某两个点y轴距离已经超过了d,这次循环就可以直接break了,开始从下一个点查找了.

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <bitset>
#include <iostream>
#include <time.h>
#include <vector>
#include <queue> typedef long long LL; using namespace std; const int N = 1e6+;
const double eps = 1e-;
const int INF = 0x3f3f3f3f;
const int mod = ;
const double PI = *atan(1.0); struct point
{
double x, y;
}p[N], t[N]; double dist(point p1, point p2)
{
return sqrt((p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y));
} bool cmpX(point p1, point p2)
{
return p1.x < p2.x;
}
bool cmpY(point p1, point p2)
{
return p1.y < p2.y;
} double Find(int L, int R)
{
if(L+ == R)///当只有两个点的时候;
return dist(p[L], p[R]);
if(L+ == R)///三个点的时候;
return min(min(dist(p[L], p[L+]), dist(p[L], p[R])), dist(p[L+], p[R])); int Mid = (L+R)/; double Min_d = min(Find(L, Mid), Find(Mid+, R));///找到两边的最小值, 下面更新中间部分的; int cnt = ; for(int i=L; i<=R; i++)
{
if(fabs(p[i].x-p[Mid].x) <= Min_d)
t[cnt++] = p[i];///把可能是最近点对中的点加入t集合中去;
} sort(t, t+cnt, cmpY);///排序,下面找到,t集合中最近的两点间的距离,跟新Min_d; for(int i=; i<cnt; i++)
{
for(int j=i+; j<cnt; j++)
{
if( t[j].y - t[i].y > Min_d )
break;
Min_d = min(Min_d, dist(t[i], t[j]));
}
}
return Min_d;
} int main()
{
int n; while(scanf("%d", &n), n)
{
for(int i=; i<n; i++)
scanf("%lf %lf", &p[i].x, &p[i].y); sort(p, p+n, cmpX);///按横坐标x排序; double ans = Find(, n-);///递归 求解; printf("%.2f\n", ans/);
}
return ;
}

Quoit Design---hdu1007(最近点对问题 分治法)的更多相关文章

  1. Quoit Design(hdu1007)最近点对问题。模版哦!

    Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...

  2. ACM-计算几何之Quoit Design——hdu1007 zoj2107

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  3. Quoit Design(最近点对+分治)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...

  4. HDU-1007 Quoit Design 平面最近点对

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007 简单裸题,测测模板,G++速度快了不少,应该是编译的时候对比C++优化了不少.. //STATU ...

  5. HDU 1007 Quoit Design最近点对( 分治法)

    题意: 给出平面上的n个点,问任意点对之间的最短距离是多少? 思路: 先将所有点按照x坐标排序,用二分法将n个点一分为二个部分,递归下去直到剩下两或一个点.对于一个部分,左右部分的答案分别都知道,那么 ...

  6. HDOJ-1007 Quoit Design(最近点对问题)

    http://acm.hdu.edu.cn/showproblem.php?pid=1007 给出n个玩具(抽象为点)的坐标 求套圈的半径 要求最多只能套到一个玩具 实际就是要求最近的两个坐标的距离 ...

  7. 【HDOJ】P1007 Quoit Design (最近点对)

    题目意思很简单,意思就是求一个图上最近点对. 具体思想就是二分法,这里就不做介绍,相信大家都会明白的,在这里我说明一下如何进行拼合. 具体证明一下为什么只需要检查6个点 首先,假设当前左侧和右侧的最小 ...

  8. 杭电OJ——1007 Quoit Design(最近点对问题)

    Quoit Design Problem Description Have you ever played quoit in a playground? Quoit is a game in whic ...

  9. hdu 1007 Quoit Design 分治求最近点对

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

随机推荐

  1. .NET LINQ 限定符操作

    限定符操作      限定符运算返回一个 Boolean 值,该值指示序列中是否有一些元素满足条件或是否所有元素都满足条件. 方法 方法名 说明 C# 查询表达式语法 Visual Basic 查询表 ...

  2. win7远程桌面连接总是显示凭证不工作解决方法总结

    使用远程桌面连接可以在网络的另一端控制某台计算机,对计算机进行实时操作,但有时会出现连接失败的情况,比如总是显示您的凭证不工作,下面是我对此问题解决办法的总结. 方法一: 1.在开始菜单内的运行框里输 ...

  3. WPF MVVM中在ViewModel中关闭或者打开Window

    这篇博客将介绍在MVVM模式ViewModel中关闭和打开View的方法. 1. ViewModel中关闭View public class MainViewModel { public Delega ...

  4. [linux] grep awk sort uniq学习

    grep的-A-B-选项详解grep能找出带有关键字的行,但是工作中有时需要找出该行前后的行,下面是解释1. grep -A1 keyword filename找出filename中带有keyword ...

  5. 【javascript学习——《javascript高级程序设计》笔记】DOM操作

    DOM(文档对象模型)是针对HTML和XML文档的一个API(应用程序编程接口).DOM描绘了一个层次节点树,允许开发人员添加.移除和修改. 1.节点层次 <html> <head& ...

  6. Jquery利用Iframe实现跨子域

    cross_sub.html <!DOCTYPE html> <html lang="en"> <head> <meta charset= ...

  7. Python for Infomatics 第12章 网络编程四(译)

    注:文章原文为Dr. Charles Severance 的 <Python for Informatics>.文中代码用3.4版改写,并在本机测试通过. 12.7 用BeautifulS ...

  8. Excel转Json,Json转CSharp

    一份给策划最好的礼物!就是:Excel2Json2CSharp 策划配置Excel,动不动就要改数值啊,增加字段啊. 程序这边对应的解析类就得改动啊.整一个麻烦了得! 所以我就整理了这个Excel2J ...

  9. yy_model及 YYLabel

    一, yy_model 1.yy_model 可以存放包含数组的属性,调用方法如下: + (NSDictionary *)modelCustomPropertyMapper { return @{@& ...

  10. js中for in的用法

    for(var i=0;i<len;i++)这样的用法一般都可以用for in 来替代. 例如: var a = ["a","b","c&quo ...