Quoit Design---hdu1007(最近点对问题 分治法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007
题意:给你n(2<=n<=10^6)个点的坐标,然后找到两个点使得他们之间的距离最小,然后输出最小距离的一半;
先把n个点按x坐标排序,然后求左边n/2个和右边n/2个的最近距离,最后合并。
首先,假设点是n个,编号为1到n。我们要分治求,则找一个中间的编号mid,先求出1到mid点的最近距离设为d1,还有mid+1到n的最近距离设为d2。这里的点需要按x坐标的顺序排好,并且假设这些点中,没有2点在同一个位置。(若有,则直接最小距离为0了)。
然后,令d为d1, d2中较小的那个点。如果说最近点对中的两点都在1-mid集合中,或者mid+1到n集合中,则d就是最小距离了。但是还有可能的是最近点对中的两点分属这两个集合,所以我们必须先检测一下这种情况是否会存在,若存在,则把这个最近点对的距离记录下来,去更新d。这样我们就可以得道最小的距离d了。
关键是要去检测最近点对,理论上每个点都要和对面集合的点匹配一次,那效率还是不能满足我们的要求。所以这里要优化。怎么优化呢?考虑一下,假如以我们所选的分割点mid为界,如果某一点的横坐标到点mid的横坐标的绝对值超过d1并且超过d2,那么这个点到mid点的距离必然超过d1和d2中的小者,所以这个点到对方集合的任意点的距离必然不是所有点中最小的。
所以我们先把在mid为界左右一个范围内的点全部筛选出来,放到一个集合里。筛选好以后,当然可以把这些点两两求距离去更新d了,不过这样还是很慢,万一满足条件的点很多呢。这里还得继续优化。首先把这些点按y坐标排序。假设排序好以后有cnt个点,编号为0到cnt-1。那么我们用0号去和1到cnt-1号的点求一下距离,然后1号和2到cnt-1号的点求一下距离。。。如果某两个点y轴距离已经超过了d,这次循环就可以直接break了,开始从下一个点查找了.
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <bitset>
#include <iostream>
#include <time.h>
#include <vector>
#include <queue> typedef long long LL; using namespace std; const int N = 1e6+;
const double eps = 1e-;
const int INF = 0x3f3f3f3f;
const int mod = ;
const double PI = *atan(1.0); struct point
{
double x, y;
}p[N], t[N]; double dist(point p1, point p2)
{
return sqrt((p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y));
} bool cmpX(point p1, point p2)
{
return p1.x < p2.x;
}
bool cmpY(point p1, point p2)
{
return p1.y < p2.y;
} double Find(int L, int R)
{
if(L+ == R)///当只有两个点的时候;
return dist(p[L], p[R]);
if(L+ == R)///三个点的时候;
return min(min(dist(p[L], p[L+]), dist(p[L], p[R])), dist(p[L+], p[R])); int Mid = (L+R)/; double Min_d = min(Find(L, Mid), Find(Mid+, R));///找到两边的最小值, 下面更新中间部分的; int cnt = ; for(int i=L; i<=R; i++)
{
if(fabs(p[i].x-p[Mid].x) <= Min_d)
t[cnt++] = p[i];///把可能是最近点对中的点加入t集合中去;
} sort(t, t+cnt, cmpY);///排序,下面找到,t集合中最近的两点间的距离,跟新Min_d; for(int i=; i<cnt; i++)
{
for(int j=i+; j<cnt; j++)
{
if( t[j].y - t[i].y > Min_d )
break;
Min_d = min(Min_d, dist(t[i], t[j]));
}
}
return Min_d;
} int main()
{
int n; while(scanf("%d", &n), n)
{
for(int i=; i<n; i++)
scanf("%lf %lf", &p[i].x, &p[i].y); sort(p, p+n, cmpX);///按横坐标x排序; double ans = Find(, n-);///递归 求解; printf("%.2f\n", ans/);
}
return ;
}
Quoit Design---hdu1007(最近点对问题 分治法)的更多相关文章
- Quoit Design(hdu1007)最近点对问题。模版哦!
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- ACM-计算几何之Quoit Design——hdu1007 zoj2107
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- Quoit Design(最近点对+分治)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- HDU-1007 Quoit Design 平面最近点对
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007 简单裸题,测测模板,G++速度快了不少,应该是编译的时候对比C++优化了不少.. //STATU ...
- HDU 1007 Quoit Design最近点对( 分治法)
题意: 给出平面上的n个点,问任意点对之间的最短距离是多少? 思路: 先将所有点按照x坐标排序,用二分法将n个点一分为二个部分,递归下去直到剩下两或一个点.对于一个部分,左右部分的答案分别都知道,那么 ...
- HDOJ-1007 Quoit Design(最近点对问题)
http://acm.hdu.edu.cn/showproblem.php?pid=1007 给出n个玩具(抽象为点)的坐标 求套圈的半径 要求最多只能套到一个玩具 实际就是要求最近的两个坐标的距离 ...
- 【HDOJ】P1007 Quoit Design (最近点对)
题目意思很简单,意思就是求一个图上最近点对. 具体思想就是二分法,这里就不做介绍,相信大家都会明白的,在这里我说明一下如何进行拼合. 具体证明一下为什么只需要检查6个点 首先,假设当前左侧和右侧的最小 ...
- 杭电OJ——1007 Quoit Design(最近点对问题)
Quoit Design Problem Description Have you ever played quoit in a playground? Quoit is a game in whic ...
- hdu 1007 Quoit Design 分治求最近点对
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
随机推荐
- Android笔记:异步消息处理
1. Message Message 是在线程之间传递的消息,它可以在内部携带少量的信息,用于在不同线程之间交换数据.上一小节中我们使用到了Message 的what 字段,除此之外还可以使用arg1 ...
- 如何破解mac版UltraEdit?
Rodolfo教你如何破解UtralEdit? 第一步:去官网下载原载,先运行一次: 第二步:在终端里执行下面代码就可以破解完成!printf '\x31\xC0\xFF\xC0\xC3\x90' | ...
- MVC学习笔记----缓存
http://www.cnblogs.com/darrenji/p/3683306.html 视图缓存 http://www.cnblogs.com/darrenji/p/3649994.html ...
- mysql explain用法
explain显示了mysql如何使用索引来处理select语句以及连接表.可以帮助选择更好的索引和写出更优化的查询语句. 使用方法,在select语句前加上explain就可以了,如: explai ...
- Java远程方法调用(Remote Method Invocation,RMI)
Java RMI简介: 它是Java的一个核心API和类库,允许一个Java虚拟机上运行的Java程序调用不同虚拟机上运行的对象中的方法,即使这两个虚拟机运行于物理隔离的不同主机上. Java RMI ...
- Win10 UWP vs add github
vs github 插件 教程 官方教程 点击查看存储库,跳转到 DemoHttp for github
- PV 与 并发数 之间的故事
PV: Page View UV: Unique Visitor 在一些已经上线的项目中,运营会统计每日的PV,UV,IP 等数据 而根据PV量,可以推算出一个相对较科学的并发数,来作为负载测试的一个 ...
- new 等于 malloc加构造函数
1.new 是c++中的操作符,malloc是c 中的一个函数 2.new 不止是分配内存,而且会调用类的构造函数,同理delete会调用类的析构函数,而malloc则只分配内存,不会进行初始化类成员 ...
- jQuery 一些神奇的选择器写法
======================================================================== =========================== ...
- js模块开发(一)
现在嵌入页面里面的javascript代码越来越复杂,于是可能依赖也越来越严重,使用别人开发的js也越来越多,于是在理想情况下,我们只需要实现核心的业务逻辑,其他都可以加载别人已经写好的模块. 于是j ...