This is a highly-cited paper. The context aware saliency proposed based on four principles, which can be explained as follows:

1. Areas that have distinctive colors or patterns should obtain high saliency;

2. Frequently occurring features should be suppressed;

3. The salient pixels should be grouped together and not spread over the image;

4. High-level factors such as priors on the salient object location and object detection are useful.

Steps:

1. Local global single-scale saliency.(Principle 1-3)

 is the euclidean distance between the positions of the two patches,  is the euclidean distance between the two patches in CIE L*a*b color space. This dissimilarity measure is proportional to the color difference and inversely proportional to the positional distance.

Finding the most K similar patches of the current patch centering at the current processed pixel and summing up, the single-scale saliency value is defined as above.

2. Multiscale saliency enhancement

For every patch of scale r, we search its neighboring patches who's scale range in {r, r/2, r/4}. Hence, the saliency of each pixel can be rewritten as :

Saliency map will be normalized to [0, 1]. Instead of just considering a single scale(r) of each patch, we represent each of them in multiscale(M scales for example). Then the saliency is :

3. Including the immediate context(principle 3)

The main purpose of this step is to take more attention to the area that are close to the foci of attention while attenuate those far away from.

To get the foci of attention, we set a threshold(0.8 in the paper) at each scale and its corresponding saliency map . Let  be the euclidean positional distance between pixel i and the closest focus of attention pixel at scale r, normalized to [0,1]. The saliency of pixel i is redefined as :

Here is the corresponding picture:

4. Center prior(principle 4)

To enhance those near to the image center while depress others.

5. High-level factors(principle 4)

For example, one could incorporate the face detection algorithm, which generates 1 for face pixels and 0 otherwise. The saliency map can then be modified by taking the maximum value of the saliency map and the face map. This part is excluded in this paper.

.

PAMI 2010 Context-aware saliency detection的更多相关文章

  1. paper 27 :图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)

    1. 早期C. Koch与S. Ullman的研究工作. 他们提出了非常有影响力的生物启发模型. C. Koch and S. Ullman . Shifts in selective visual ...

  2. {Links}{Matting}{Saliency Detection}{Superpixel}Source links

    自然图像抠图/视频抠像技术发展情况梳理(image matting, alpha matting, video matting)--计算机视觉专题1 http://blog.csdn.net/ansh ...

  3. [精读]Spationtemporal Saliency Detection Using Textural Contrast and Its Applications

    Spationtemporal Saliency Detection Using Textural Contrast and Its Applications Last Edit 2013/12/3 ...

  4. Saliency Detection via Graph-Based Manifold Ranking

    Saliency Detection via Graph-Based Manifold Ranking https://www.yuque.com/lart/papers 本文不是按照之前的论文那样, ...

  5. Saliency Detection: A Spectral Residual Approach

    Saliency Detection: A Spectral Residual Approach 题目:Saliency Detection: A Spectral Residual Approach ...

  6. 论文阅读:Review of Visual Saliency Detection with Comprehensive Information

    这篇文章目前发表在arxiv,日期:20180309. 这是一篇针对多种综合性信息的视觉显著性检测的综述文章. 注:有些名词直接贴原文,是因为不翻译更容易理解.也不会逐字逐句都翻译,重要的肯定不会错过 ...

  7. 视觉显著性检测(Visual saliency detection)相关概念

    视觉显著性检测(Visual saliency detection)指通过智能算法模拟人的视觉特点,提取图像中的显著区域(即人类感兴趣的区域). 视觉注意机制(Visual Attention Mec ...

  8. 显著性检测(saliency detection)评价指标之sAUC(shuffled AUC)的Matlab代码实现

    AUC_shuffled.m function [score,tp,fp] = AUC_shuffled(saliencyMap, fixationMap, otherMap, Nsplits, st ...

  9. 显著性检测(saliency detection)评价指标之NSS的Matlab代码实现

    calcNSSscore.m function [ score ] = calcNSSscore( salMap, eyeMap ) %calcNSSscore Calculate NSS score ...

随机推荐

  1. linux下shell编写九九乘法表

    主要语法:类似    1x2       echo   $((1*2)) for 变量 in 值1 值2 值3 ;do linux命令或者语句done

  2. delete file by bat

    @echo off set logFile=AmazonDeleteFiles.log set Feeds="E:\AmazonProject\AmazonListing\AmazonLis ...

  3. redis缓存

    参考: java对redis的基本操作 http://www.cnblogs.com/edisonfeng/p/3571870.html 一.支持类型: key:一般设计为标准的字符串, values ...

  4. mac ssh localhost

    转自:http://blog.csdn.net/cwj649956781/article/details/37913637 mac 无法ssh localhost,错误提示:bash: /usr/lo ...

  5. 压力测试 php-fpm 优化

    webbench最多可以模拟3万个并发连接去测试网站的负载能力,个人感觉要比Apache自带的ab压力测试工具好,安装使用也特别方便. 1.适用系统:Linux 2.编译安装:引用wget http: ...

  6. pythonbrew, pythonz, virtualenv

    Python 的虛擬環境及多版本開發利器─Virtualenv 與 Pythonbrewhttp://www.openfoundry.org/tw/tech-column/8516-pythons-v ...

  7. XML编程知识点总结

    DOM和SAX DOM的全称是Document Object Model,也即文档对象模型.基于DOM的XML分析器将一个XML文档转换成一个对象模型的集合,应用程序挣是通过对这个对象模型的操作,来实 ...

  8. 51nod 1180 方格射击游戏

    M*N的方格矩阵,一个人在左下角格子的中心,除他所站位置外,其他格子的中心都有一个敌人,他一次可发射一枚子弹干掉一条直线上的所有敌人,问至少要发射多少子弹才能干掉所有敌人. Input 输入2个数m, ...

  9. ubuntu16041,安装opencv3.1.0

    [非常感谢:http://www.linuxdiyf.com/linux/18482.html] 1.依赖关系: sudo apt-get install build-essentialsudo ap ...

  10. Software Development Principle

    Every great piece of software begins with customer's big idea. As a professional softeware developer ...