06day1
Rabbit Number
枚举
【问题描述】
设 S(N)表示 N 的各位数字之和,如 S(484)=4+8+4=16,S(22)=2+2=4。如果一个正整数 x满足 S(x*x)=S(x)*S(x),我们称 x 为 Rabbit Number。比方说,22 就是一个 Rabbit Number,因为 S(484)=S(22)*S(22)。
现在,给出一个区间[L,R],求在该区间内的 Rabbit Number 的个数。
【输入】
输入仅一行,为空格隔开的两个数 L 和 R。
【输出】
输出仅一行一个整数,表示所求 Rabbit Number 的个数。
【数据规模】
1≤L≤R≤10^9
【解题过程】
看到这么大的数据范围第一反应是找规律。于是先开始手工推,然后暴力跑了 10^9 内的所有 RabbitNumber,发现每一位只可能取 0,1,2,3,而数据范围最多是 9 位数(10^9 这个数字可以单独考虑),那么就无脑爆搜了,复杂度 O(4^9)。
初次提交 100 分。
Play with Power
动态规划
【问题描述】
Masha 和 Stas 正在玩一个游戏。在游戏的开始,给出一个定值 N,同时有两个正整数 A 和 B,初始时满足 A^B ≤N。Masha 先手。每一回合,玩家要将 A 和 B 的其中一个数加上 1,但不能令到 A^B >N,否则该玩家输。
现在,Masha 想知道假如两人都使用最优策略,对于一个特定的 N,不同的 A、B 的初始值谁将获胜呢?
【输入】
输入第一行为一个正整数 N。
输入第二行为一个正整数 T,表示测试数据个数。
下面 T 行,每行有两个正整数 Ai、Bi,描述了一组测试数据<Ai,Bi,N>,含义如题目描述。
【输出】
对每组数据输出一行。如果先手 Masha 获胜,输出"Masha";如果后手 Stas 获胜,输出 Stas;
如果平手则输出"Missing"(不用输出引号)。
【数据规模】
对 30%的数据,有 1≤N≤2000;
对 100%的数据,有1≤N≤10^8
1≤T≤100
1≤Ai,1≤Bi,Ai Bi ≤N
【解题过程】
这种题目很明显是动规嘛。
用 f(i, j) 表示当 A=i, B=j 时先手的结果,用 0,1,2 分别表示必败、必胜、平局,则 f(i, j) 可以由 f(i+1, j) 和 f(i, j+1) 转移而来,记 v1=f(i+1, j), v2=f(i, j+1),则
f(i, j)=0 当且仅当 v1=1 且 v2=1
f(i, j)=1 当且仅当 v1=0 或 v2=0
f(i, j)=2 除上所述的其他情况以及i^j>N的情况
注意:
- 当 i=1 时 f(i, j) 必然等于 2
- 判断 i^j>N 的过程中,i^j 可能会爆 long long,所以在求幂的过程中实时判断是否已经超过了 N;
- 对于大于 sqrt(N) 的数 i,对应的 j 只能取 1,所以可以直接根据N-i 的奇偶性判断,否则用记忆化搜索可能会爆栈。
另外,这道题的标程是错的。题目里并没有说 A, B 要小于等于 N,而标程里却加了这个限制,导致第一次提交 0 分。
Color the Axis
线段树
【问题描述】
在一条数轴上有 N 个点,分别是 1~N。一开始所有的点都被染成黑色。接着我们进行 M 次操作,第 i 次操作将[Li,Ri]这些点染成白色。请输出每个操作执行后剩余黑色点的个数。
【输入】
输入一行为 N 和 M。下面 M 行每行两个数 Li、Ri。
【输出】
输出 M 行,为每次操作后剩余黑色点的个数。
【数据规模】
对于 30%的数据,有 1≤N≤2000,1≤M≤2000;
对于 100%的数据,有 1≤Li≤Ri≤N≤200000,1≤M≤200000。
【解题过程】
lazy-tag
另外,照 LZW 大神的说法,比 lazy-tag 更懒的做法是,不下传标记(因为只有插入操作),操作时如果已有标记则直接返回。
初次提交 100 分。
06day1的更多相关文章
随机推荐
- 高性能网络编程1----accept建立连接
转 http://taohui.org.cn/tcpperf1.html 陶辉 taohui.org.cn 回到应用层,往往只需要调用类似于accept的API就可以建立TCP连接.建立连接的流程大 ...
- 宏基5750G 不能用内置无线网卡上网
宏基5750G 不能用内置无线网卡上网 具体体现在: 1.--> 搜索不到无线网络: 2.点击“打开网络和共享中心”-->没有“管理无线网络”一项.如果正常的话应该是这样的: 3.“我的电 ...
- HTTP/2 对 Web 性能的影响(下)
一.前言 我们在 HTTP/2 对 Web 性能的影响(上)已经和大家分享了一些关于 Http2 的二项制帧.多用复路以及 APM 工具等,本文作为姊妹篇,主要从 http2 对 Web 性能的影响. ...
- 2013 ACM-ICPC长沙赛区全国邀请赛——A So Easy!
这题在比赛的时候不知道怎么做,后来看了别人的解题报告,才知道公式sn=(a+sqrt(b))^n+(a-sqrt(b))^n; 具体推导 #include<iostream> #inclu ...
- .NET复习笔记
.NET 基础知识点汇总 课前知识储备. 一.C#与.NET的区别? 1..NET/dotnet:一般指.Net Framework框架,一种平台,一种技术 2.C#(sharp):一种编程语言,可以 ...
- 读写txt文件
public void SetUpdateTime(string strNewDate) { try { var path =Application.StartupPath + Configurati ...
- Linux Shell 数字计算与比较
直接上脚本, 使用$(())以及$[]进行数字计算 数值比较:n1 -eq n2检查n1是否等于n2 n1 -le n2检查n1是否小于等于n2n1 -ge n2检查n1是否大于等于n ...
- 李洪强iOS开发支付集成之微信支付
iOS开发支付集成之微信支付 微信支付也是需要签名的,也跟支付宝一样,可以在客户端签名,也可以在后台签名(当然,为了安全还是推荐在服务器上做签名,逻辑也比较好理解). 1 - 集成前首先要看看文档 开 ...
- lintcode: 爬楼梯
题目: 爬楼梯 假设你正在爬楼梯,需要n步你才能到达顶部.但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部? 样例 比如n=3,中不同的方法 返回 3 解题: 动态规划题目,同时还是有顺序 ...
- POJ1118 Lining Up
快弄死我了 最后的原因是abs和fabs的区别... 说点收获:1.cmp函数返回的是int,所以不要直接返回double相减的结果2.define inf 1e9和eps 1e-93.在整数相除得到 ...