题目描述:
为了让他们的儿子变得更勇敢些,Jiajia和Wind将他们带到一个大洞穴中。洞穴中有n个房
间,有一些单向的通道连接某些房间。每次,Wind选择两个房间x和y,要求他们的一个儿子从
一个房间走到另一个房间,这个儿子可以从x走到y,也可以从y走到x。Wind保证她布置的任
务是可以完成的,但她确实不知道如何判断一个任务是否可以完成。为了使Wind下达任务更容
易些,Jiajia决定找这样的一个洞穴,每对房间(设为x和y)都是相通(可以从x走到y,或者
可以从y走到x)的。给定一个洞穴,你能告诉Jiajia,Wind是否可以任意选择两个房间而不用
担心这两个房间可能不相通吗?
//
求解的是单连通性,但首先要转换成强连通分量的求解。这是因为,强连通分量中
的顶点间存在双向的路径,因此可以将每个强连通分量收缩成一个新的顶点。在有向图的处理中
经常需要将强连通分量收缩成一个顶点。 强连通分量收缩后,再求其拓扑排序。假设求得的拓扑序存储在topo[MAX]中,topo[i]与
topo[i+1]存在边连通(i 到i+1 或i+1 到i),则定有i 到i+1 的边。而如果每个topo[i]与topo[i+1]
都存在边连通(即有i 到i+1 的边)时,topo[i]到任意topo[j]便都有边连通。
// topsort时偷懒 用了邻接矩阵 复杂度成了 n^2 写成邻接表应该要快好多
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#include <math.h>
#include <stdio.h>
#include <string.h>
using namespace std;
#define MOD 1000000007
#define maxn 6100
#define maxm 1010
struct Edge{
int to;
int next;
Edge(){};
Edge(int u,int v){to=u;next=v;}
}E[maxn];
stack<int> S;
int V[maxm],num;
int belong[maxm];
int pre[maxm];
int dfst,scc;
int ans;
bool G[maxm][maxm];
int in[maxm];
void init(int n){
dfst=scc=;
num=;
ans=;
while(!S.empty())
S.pop();
for(int i=;i<=n;i++){
V[i]=-;
pre[i]=;
belong[i]=;
}
}
void add(int u,int v){
E[num].to=v;
E[num].next=V[u];
V[u]=num++;
}
int tarjan(int u){
int lowu=pre[u]=++dfst;
int v,e;
S.push(u);
for(e=V[u];e!=-;e=E[e].next){
v=E[e].to;
if(!pre[v]){
int lowv=tarjan(v);
lowu=min(lowu,lowv);
}
else if(!belong[v]) lowu=min(lowu,pre[v]);
}
if(lowu==pre[u]){
scc++;
for(;;){
int x=S.top();S.pop();
belong[x]=scc;
if(x==u) break;
}
}
return lowu;
}
int top[maxm],tn;
void topsort(){
int i,j,k;
tn=;
bool vi[maxm]={};
while(){
for(i=;i<=scc;i++)
if(!in[i]&&!vi[i]) break;
vi[i]=true;
// printf("%d ",i);
if(i>scc) break;
top[tn++]=i;
for(j=;j<=scc;j++)
if(G[i][j]) in[j]--;
}
}
int main()
{
int n,m,T;
int u,v;
int i,j=;
scanf("%d",&T);
while(T--){
scanf("%d %d",&n,&m);
init(n);
for(i=;i<=m;i++){
scanf("%d %d",&u,&v);
add(u,v);
}
for(i=;i<=n;i++)
if(!pre[i]) tarjan(i);
// for(i=1;i<=n;i++) printf("%d ",belong[i]);
for(i=;i<=scc;in[i]=,i++)
for(j=;j<=scc;j++)
G[i][j]=;
int e,u,v; for(i=;i<=n;i++)
{
for(e=V[i];e!=-;e=E[e].next){
u=belong[i];
v=belong[E[e].to];
if(u!=v){
G[u][v]=;
in[v]++;
// printf("%d ",v);
}
}
} topsort();//printf("\\");
int flag=;
for(i=;i<tn;i++)
if(!G[top[i-]][top[i]]){
flag=;break;
}
if(flag) printf("Yes\n"); else printf("No\n");
}
return ;
}

poj 2762 Going from u to v or from v to u?的更多相关文章

  1. POJ 2762 Going from u to v or from v to u? (强连通分量缩点+拓扑排序)

    题目链接:http://poj.org/problem?id=2762 题意是 有t组样例,n个点m条有向边,取任意两个点u和v,问u能不能到v 或者v能不能到u,要是可以就输出Yes,否则输出No. ...

  2. poj 2762 Going from u to v or from v to u?(强连通分量+缩点重构图+拓扑排序)

    http://poj.org/problem?id=2762 Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit:  ...

  3. POJ 2762 Going from u to v or from v to u?(强连通分量+拓扑排序)

    职务地址:id=2762">POJ 2762 先缩小点.进而推断网络拓扑结构是否每个号码1(排序我是想不出来这点的. .. ).由于假如有一层为2的话,那么从此之后这两个岔路的点就不可 ...

  4. POJ 2762 Going from u to v or from v to u? (判断单连通)

    http://poj.org/problem?id=2762 题意:给出有向图,判断任意两个点u和v,是否可以从u到v或者从v到u. 思路: 判断图是否是单连通的. 首先来一遍强连通缩点,重新建立新图 ...

  5. [ tarjan + dfs ] poj 2762 Going from u to v or from v to u?

    题目链接: http://poj.org/problem?id=2762 Going from u to v or from v to u? Time Limit: 2000MS   Memory L ...

  6. POJ 2762 Going from u to v or from v to u?(强联通,拓扑排序)

    id=2762">http://poj.org/problem?id=2762 Going from u to v or from v to u? Time Limit: 2000MS ...

  7. [强连通分量] POJ 2762 Going from u to v or from v to u?

    Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17089 ...

  8. poj 2762 Going from u to v or from v to u?【强连通分量缩点+拓扑排序】

    Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15812 ...

  9. POJ 2762 Going from u to v or from v to u? Tarjan算法 学习例题

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17104   Accepted: 4594 Description In o ...

随机推荐

  1. vs2010中臃肿的ipch和sdf文件

    使用VS2010建立C++解决方案时,会生成SolutionName.sdf和一个叫做ipch的文件夹,这两个文件再加上*.pch等文件使得工程变得非常的庞大,一个简单的程序都会占用几十M的硬盘容量, ...

  2. php集成开发环境的安装以及Zend Studio开发工具的安装

    一.集成开发环境: wampserver 下载地址: 官网: http://www.wampserver.com/ 直接下载 http://sourceforge.net/projects/wamps ...

  3. java基础知识回顾之java Thread类学习(七)--java多线程安全问题(死锁)

    死锁:是两个或者两个以上的线程被无限的阻塞,线程之间互相等待所需资源. 线程死锁产生的条件: 当两个线程相互调用Join()方法. 当两个线程使用嵌套的同步代码块的时候,一个线程占用了另一个线程的锁, ...

  4. Android开发--解决AndroidADT开发工具不能代码提示的问题

    google android的新的开发工具,打开以后没有代码自动提示功能,下面对ADT工具的一些配置: 1.设置代码的字体 设置JAVA文件代码的字体:我这里设置的14 常规.

  5. hdu2018

    http://acm.hdu.edu.cn/showproblem.php?pid=2018 #include<iostream> #include<stdio.h> #inc ...

  6. lintcode:Unique Characters 判断字符串是否没有重复字符

    题目: 判断字符串是否没有重复字符 实现一个算法确定字符串中的字符是否均唯一出现 样例 给出"abc",返回 true 给出"aab",返回 false 挑战 ...

  7. Linux实时网络监控工具:iftop

    iftop是类似于top的实时流量监控工具,可以用来实时监控网卡的实时流量(可以指定网段).反向解析IP.显示端口信息等.夜间值班的童鞋如果发现有邮局流量异常时可以使用该软件查看详细流量状况. 下面介 ...

  8. 本人arcgis api for javascript中常见错误总结

    1. 2.对象不支持"replace"属性或方法 解决办法:一般在ie中执行js会报这样的错误,基本问题就是你引用了某个对象中不存在的方法,可能是这个方法本来存在而你写错了,或者调 ...

  9. 32. Longest Valid Parentheses

    题目: Given a string containing just the characters '(' and ')', find the length of the longest valid ...

  10. java抓取动态生成的网页

    最近在做项目的时候有一个需求:从网页面抓取数据,要求是首先抓取整个网页的html源码(后期更新要使用到).刚开始一看这个简单,然后就稀里哗啦的敲起了代码(在这之前使用过Hadoop平台的分布式爬虫框架 ...