题意:三个数x, y, z. 给出最大公倍数g和最小公约数l.求满足条件的x,y,z有多少组.

题解:设n=g/l n=p1^n1*p2^n2...pn^nk (分解质因数

  那么x = p1^x1 * p2^x2 * .... ^ pn^xk

    y = p1^y1 * p2^y2 * .... ^ pn^yk

    x = p1^z1 * p2^z2 * .... ^ pn^zk

那么对于任意i (0<=i<=k) 都有 min(xi, yi, zi) = 0, max(xi, yi, zi) = ni

于是枚举每一个质因数的分配情况即可得出答案.

对于每一个i pi ni

有一个因子要为pi^ni 有一个因子要为pi^0

于是一共有(ni+1)^3(所有情况) - ni^3(没有0) - ni^3(没有ni) + (ni-1)^3(既没有0也没有ni) 中情况

枚举出所有小于根号n 的因数 如果 没有除尽 剩下的是一个大的质因数

感悟:

应该算是比较水的题

但是由于很少做数论的题

所以总会觉得是因为有什么定理不会 所以不愿意去思考

也无从下手

以后碰到lcm和gcd的题 知道了有一个角度是分解质因数

#include <bits/stdc++.h>
using namespace std; int main()
{
freopen("in", "r", stdin);
int T;
cin >> T;
while (T--) {
int g, l;
cin >> g >> l;
if (l % g) {
printf("0\n");
continue;
}
int n = l / g;
int limit = (int) sqrt((double)n);
int cnt, ans = ;
for (int i = ; i <= limit; ++i) {
if (n % i == ) {
cnt = ;
while (n % i == ) {
n /= i;
cnt++;
}
ans *= cnt * ;
}
}
if (n > ) ans *= ;
printf("%d\n", ans);
}
return ;
}

  

HDU 4497 GCD and LCM (数论)的更多相关文章

  1. HDU 4497 GCD and LCM(数论+容斥原理)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  2. 数论——算数基本定理 - HDU 4497 GCD and LCM

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  3. hdu 4497 GCD and LCM 数学

    GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...

  4. HDU 4497 GCD and LCM (合数分解)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  5. hdu 4497 GCD and LCM (非原创)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  6. HDU 4497 GCD and LCM(分解质因子+排列组合)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...

  7. hdu 4497 GCD and LCM(2013 ACM-ICPC吉林通化全国邀请赛——题目重现)

    质分解 + 简单计数.当时去比赛的时候太年轻了...这道题都没敢想.现在回过头来做了一下,发现挺简单的,当时没做这道题真是挺遗憾的.这道题就是把lcm  / gcd 质分解,统计每个质因子的个数,然后 ...

  8. HDU 4497 GCD and LCM (分解质因数)

    链接 :  http://acm.hdu.edu.cn/showproblem.php?pid=4497 假设G不是L的约数 就不可能找到三个数. L的全部素因子一定包括G的全部素因子 而且次方数 ...

  9. HDU 4497 GCD and LCM 素因子分解+ gcd 和 lcm

    题意: 给两个数,lll 和 ggg,为x , y , z,的最小公倍数和最大公约数,求出x , y , z 的值有多少种可能性 思路: 将x , y , z进行素因子分解 素因子的幂次 x a1 a ...

随机推荐

  1. Servlet入门案例

    开发servlet有三种方法: 1.实现Servlet接口; public interface Servlet { void init(ServletConfig var1) throws Servl ...

  2. Consistent Hashing算法-搜索/负载均衡

    在做服务器负载均衡时候可供选择的负载均衡的算法有很多,包括:  轮循算法(Round Robin).哈希算法(HASH).最少连接算法(Least Connection).响应速度算法(Respons ...

  3. java socket nio编程

    上次写了一个socket的基本编程,但是有个问题,阻塞特别严重,于是小编便去找了nio学习了一下... public class TimeServer { public static void mai ...

  4. 利用CodeIgniter中的Email类发邮件

    CodeIgniter拥有功能强大的Email类.以下为利用其发送邮件的代码. 关于CI的Email类的详情请参考:http://codeigniter.org.cn/user_guide/libra ...

  5. chrome渲染hover状态tranform相邻元素抖动bug

    最近同事在使用 css3 的 transition + tranform 的时候影响了相邻的元素出现bug.或者说相邻的元素出现抖动bug. 然而把 hover 状态的 tranform 属性删了后, ...

  6. 如何查看你的 memcached 的状态

    最近略忙,好久没有更新博客了,已长草,今天来除下草,好了,不废话了,开始! 现在很多web服务都会用到  memcached ,如何知道你的 memcached 是否正常工作,命中率如何呢,本文简单介 ...

  7. poj3321

    树映射到树状数组上 非常好的题目,给了我很多启发 题目要求动态求一个棵子树的节点个数 不禁联想到了前缀和,只要我们能用一个合适的优先级表示每个顶点,那么就好做了 我们可以考虑将子树表示成区间的形式 这 ...

  8. Webapp meta标签解决移动缩放的问题

    webapp开发初期,会碰到在pc端开发好的页面在移动端显示过大的问题,这里需要在html head中加入meta标签来控制缩放 <meta name=" viewport" ...

  9. Android使用Webview加载网页

    安卓使用Webview来加载和显示网页内容,首先在layout文件中定义Webview <?xml version="1.0" encoding="utf-8&qu ...

  10. 逻辑回归损失函数(cost function)

    逻辑回归模型预估的是样本属于某个分类的概率,其损失函数(Cost Function)可以像线型回归那样,以均方差来表示:也可以用对数.概率等方法.损失函数本质上是衡量”模型预估值“到“实际值”的距离, ...