设$f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)==d],\\F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lfloor \frac{M}{n} \rfloor$

则$f(n)$

$=\sum_{n|d}\mu(\frac{n}{d})F(d)$

$=\sum_{n|d}\mu(\frac{n}{d})\lfloor \frac{N}{d} \rfloor \lfloor \frac{M}{d} \rfloor$

设$d=kn$

$=\sum_{k=1}^{min(\lfloor \frac{N}{n} \rfloor,\lfloor \frac{M}{n} \rfloor)}\space\mu(k)\lfloor \frac{N}{kn} \rfloor \lfloor \frac{M}{kn} \rfloor$

所以对$\lfloor \frac{N}{kn} \rfloor \lfloor \frac{M}{kn} \rfloor$整除分块,对$\mu(k)$搞一个前缀和。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define R register ll
using namespace std;
namespace Fread {
static char B[<<],*S=B,*D=B;
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
}using Fread::g;
int n,a,b,c,d,x,cnt;
int mu[],pri[];
bool v[];
inline void MU(int n) { mu[]=;
for(R i=;i<=n;++i) {
if(!v[i]) pri[++cnt]=i,mu[i]=-;
for(R j=;j<=cnt&&i*pri[j]<=n;++j) {
v[i*pri[j]]=true;
if(i%pri[j]==) break;
mu[i*pri[j]]=-mu[i];
}
} for(R i=;i<=n;++i) mu[i]+=mu[i-];
}
inline ll calc(int a,int b) { R ret=; a>b?swap(a,b):void();
for(R l=,r;l<=a;l=r+) {
r=min(a/(a/l),b/(b/l));
ret+=(ll)(mu[r]-mu[l-])*(a/l)*(b/l);
} return ret;
}
signed main() {
#ifdef JACK
freopen("NOIPAK++.in","r",stdin);
#endif
MU(); n=g(); while(n--) { R ans=;
a=g()-,b=g(),c=g()-,d=g(),x=g();
printf("%lld\n",calc(b/x,d/x)-calc(a/x,d/x)-calc(b/x,c/x)+calc(a/x,c/x));
}
}

2019.06.09

Luogu P2522 [HAOI2011]Problem b 莫比乌斯反演的更多相关文章

  1. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  2. 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)

    题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...

  3. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  4. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  5. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  6. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

  7. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  8. 【题解】Luogu P2522 [HAOI2011]Problem b

    原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 我们看题面,让求对于区间\([a,b]\)内的整数x和\([c,d]\)内的y,满足$ gcd(x,y)=k$的数对的个数 我们珂以跟容斥原理(二 ...

  9. [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演

    1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...

随机推荐

  1. zabbix性能优化等

    摘自: http://blog.sina.com.cn/s/blog_4cbf97060101fcfw.html 非常好的一篇,值得有用

  2. 勤于思考:IE10不支持检测IE6的代码

    这句话 var isIE6 = isIE && ([/MSIE (\d)\.0/i.exec(navigator.userAgent)][0][1] == 6); 在IE6~9都没问题 ...

  3. Listen81

    Nut-Cracking Chimps Demonstrate Cultural Differences One family generally dines on Chinese takeout w ...

  4. ubuntu的root权限设置

    Linux操作系统有root权限用户和普通权限用户两种模式. 在执行一些需要权限才能执行的任务时,我们需要转化到root权限用户条件下才能执行. 1.普通用户权限转临时root权限: Linux中,通 ...

  5. 跨线程send message

    今天同事问了一个问题,说在线程中send message 和直接调用是不是一样,他觉得是一样的,但是线程跟踪却发现处理过程是在接收消息队列完成.回家看到博客园上的一番争论才有些明白,这里贴出来,共勉 ...

  6. JDK中主要的包介绍

  7. Sysctl命令及linux内核参数调整

        一.Sysctl命令用来配置与显示在/proc/sys目录中的内核参数.如果想使参数长期保存,可以通过编辑/etc/sysctl.conf文件来实现.    命令格式:  sysctl [-n ...

  8. AtCoder Grand Contest #026 A - Colorful Slimes 2

    Time Limit: 2 sec / Memory Limit: 1024 MB Score : 200200 points Problem Statement Takahashi lives in ...

  9. 「UVA1636」Headshot(概率

    题意翻译 你有一把枪(左轮的),你随机装了一些子弹,你开了一枪,发现没有子弹,你希望下一枪也没有子弹,你是应该直接开一枪(输出"SHOOT"),还是先转一下,再开一枪(输出&quo ...

  10. bzoj 4514: 数字配对

    题目大意 自己看 题解 我们打表观察规律发现一定能构成一张二分图 也就是不存在奇环 所以我们一般保证费用非负的最大流即可. #include <cstdio> #include <c ...