设$f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)==d],\\F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lfloor \frac{M}{n} \rfloor$

则$f(n)$

$=\sum_{n|d}\mu(\frac{n}{d})F(d)$

$=\sum_{n|d}\mu(\frac{n}{d})\lfloor \frac{N}{d} \rfloor \lfloor \frac{M}{d} \rfloor$

设$d=kn$

$=\sum_{k=1}^{min(\lfloor \frac{N}{n} \rfloor,\lfloor \frac{M}{n} \rfloor)}\space\mu(k)\lfloor \frac{N}{kn} \rfloor \lfloor \frac{M}{kn} \rfloor$

所以对$\lfloor \frac{N}{kn} \rfloor \lfloor \frac{M}{kn} \rfloor$整除分块,对$\mu(k)$搞一个前缀和。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define R register ll
using namespace std;
namespace Fread {
static char B[<<],*S=B,*D=B;
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
}using Fread::g;
int n,a,b,c,d,x,cnt;
int mu[],pri[];
bool v[];
inline void MU(int n) { mu[]=;
for(R i=;i<=n;++i) {
if(!v[i]) pri[++cnt]=i,mu[i]=-;
for(R j=;j<=cnt&&i*pri[j]<=n;++j) {
v[i*pri[j]]=true;
if(i%pri[j]==) break;
mu[i*pri[j]]=-mu[i];
}
} for(R i=;i<=n;++i) mu[i]+=mu[i-];
}
inline ll calc(int a,int b) { R ret=; a>b?swap(a,b):void();
for(R l=,r;l<=a;l=r+) {
r=min(a/(a/l),b/(b/l));
ret+=(ll)(mu[r]-mu[l-])*(a/l)*(b/l);
} return ret;
}
signed main() {
#ifdef JACK
freopen("NOIPAK++.in","r",stdin);
#endif
MU(); n=g(); while(n--) { R ans=;
a=g()-,b=g(),c=g()-,d=g(),x=g();
printf("%lld\n",calc(b/x,d/x)-calc(a/x,d/x)-calc(b/x,c/x)+calc(a/x,c/x));
}
}

2019.06.09

Luogu P2522 [HAOI2011]Problem b 莫比乌斯反演的更多相关文章

  1. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  2. 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)

    题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...

  3. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  4. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  5. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  6. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

  7. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  8. 【题解】Luogu P2522 [HAOI2011]Problem b

    原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 我们看题面,让求对于区间\([a,b]\)内的整数x和\([c,d]\)内的y,满足$ gcd(x,y)=k$的数对的个数 我们珂以跟容斥原理(二 ...

  9. [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演

    1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...

随机推荐

  1. 8--json交互

    8.1 为什么要进行json数据交互 json数据格式在接口调用.html页面中较常用,json格式较简单,解析较方便. 比如:webservice接口,传输json数据. 8.2      spri ...

  2. python的try...except

    try/except与其他语言相同,在python中,try/except语句主要是用于throw程序正常执行过程中出现的异常,如语法错(python作为脚本语言没有编译的环节,在执行过程中对语法进行 ...

  3. laravel基础课程---5、路由复习(路由作用)

    laravel基础课程---5.路由复习(路由作用) 一.总结 一句话总结: 有利于百度收录,及SEO优化 1.路由书写 (D:\laravel\yzmedu\yzm2\routes\web.php) ...

  4. selenium 经常用到的API

    一.webdriver 属性及方法: 1.获取当前页面的 url driver.current_url 2 .获取窗口相关信息 get_window_position() 返回窗口x,y坐标 get_ ...

  5. leetcode 111 Minimum Depth of Binary Tree(DFS)

    Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along the shor ...

  6. javaCV开发详解之8:转封装在rtsp转rtmp流中的应用(无须转码,更低的资源消耗)

    javaCV系列文章: javacv开发详解之1:调用本机摄像头视频 javaCV开发详解之2:推流器实现,推本地摄像头视频到流媒体服务器以及摄像头录制视频功能实现(基于javaCV-FFMPEG.j ...

  7. 【转】有的共享软件赚了一百万美元,而为什么你没有?&&我的软件推广成功之路

    有的共享软件赚了一百万美元,而为什么你没有? 转自:http://blog.csdn.net/wangjiwei2010/article/details/1267044 译:DreamGoal 原作: ...

  8. 6 git 生成SSH公钥/私钥 查看公钥

    如果没有公钥的话就生成公钥私钥:  $ ssh-keygen 然后连续回车(一次是位置,两次密码)

  9. Jenkins Email Extension Plugin 邮件插件

    1:系统管理-管理插件-可选插件  搜索Email 可列出Email Extension Plugin插件 2:选择相应的插件点  下载并安装之后重启,等待 3:安装完后,自己去重启tomcat,先s ...

  10. VR虚拟现实眼镜那些事

    今天是2014.3.20,笔者从oculus官网订了DK2(第二代开发版) 评测视频http://v.youku.com/v_show/id_XNjg3NTUzOTk2.html 想想从哪说起呢... ...