设$f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)==d],\\F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lfloor \frac{M}{n} \rfloor$

则$f(n)$

$=\sum_{n|d}\mu(\frac{n}{d})F(d)$

$=\sum_{n|d}\mu(\frac{n}{d})\lfloor \frac{N}{d} \rfloor \lfloor \frac{M}{d} \rfloor$

设$d=kn$

$=\sum_{k=1}^{min(\lfloor \frac{N}{n} \rfloor,\lfloor \frac{M}{n} \rfloor)}\space\mu(k)\lfloor \frac{N}{kn} \rfloor \lfloor \frac{M}{kn} \rfloor$

所以对$\lfloor \frac{N}{kn} \rfloor \lfloor \frac{M}{kn} \rfloor$整除分块,对$\mu(k)$搞一个前缀和。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define R register ll
using namespace std;
namespace Fread {
static char B[<<],*S=B,*D=B;
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
}using Fread::g;
int n,a,b,c,d,x,cnt;
int mu[],pri[];
bool v[];
inline void MU(int n) { mu[]=;
for(R i=;i<=n;++i) {
if(!v[i]) pri[++cnt]=i,mu[i]=-;
for(R j=;j<=cnt&&i*pri[j]<=n;++j) {
v[i*pri[j]]=true;
if(i%pri[j]==) break;
mu[i*pri[j]]=-mu[i];
}
} for(R i=;i<=n;++i) mu[i]+=mu[i-];
}
inline ll calc(int a,int b) { R ret=; a>b?swap(a,b):void();
for(R l=,r;l<=a;l=r+) {
r=min(a/(a/l),b/(b/l));
ret+=(ll)(mu[r]-mu[l-])*(a/l)*(b/l);
} return ret;
}
signed main() {
#ifdef JACK
freopen("NOIPAK++.in","r",stdin);
#endif
MU(); n=g(); while(n--) { R ans=;
a=g()-,b=g(),c=g()-,d=g(),x=g();
printf("%lld\n",calc(b/x,d/x)-calc(a/x,d/x)-calc(b/x,c/x)+calc(a/x,c/x));
}
}

2019.06.09

Luogu P2522 [HAOI2011]Problem b 莫比乌斯反演的更多相关文章

  1. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  2. 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)

    题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...

  3. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  4. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  5. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  6. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

  7. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  8. 【题解】Luogu P2522 [HAOI2011]Problem b

    原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 我们看题面,让求对于区间\([a,b]\)内的整数x和\([c,d]\)内的y,满足$ gcd(x,y)=k$的数对的个数 我们珂以跟容斥原理(二 ...

  9. [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演

    1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...

随机推荐

  1. python读取文件的几种方式

    http://www.cnblogs.com/nkwy2012/p/6023710.html

  2. 苹果AppStore如何申请加急审核

    登录iTunesconnect,点击右上角的“?”图标,选择“联系我们”. iTunes Connect首页 依次选择“App Review”.“App Store Review” .” Reques ...

  3. 分享知识-快乐自己:intellij Idea报错Could not autowire. No beans of...

    intellig idea 使用@Resource或者@Autowire报错,出现红色波浪线: 虽然不影响使用,但是看着很不爽,所以还是解决了下: 报错提示: Could not autowire. ...

  4. L85

    Surgical Never Events Happen Nevertheless Surgeons call them "never events", because they ...

  5. array_2.array_rand

    从数组中随机取出一个或多个单元 <?php $arr = [1, 2, 3]; $rand = array_rand($arr, 2); var_dump($rand);

  6. python二进制数据

    一直以来对python的二进制数据搞不清楚. 一.二进制显示格式与实际存储值区别 1.二进制数据在python中以字节(bytes)类型和字节数组类型(bytearray)保存着,前者数据固定,后者不 ...

  7. ACM学习历程—HDU 1276 士兵队列训练问题(队列)

    Description 某部队进行新兵队列训练,将新兵从一开始按顺序依次编号,并排成一行横队,训练的规则如下:从头开始一至二报数,凡报到二的出列,剩下的向小序号方向靠 拢,再从头开始进行一至三报数,凡 ...

  8. WC2017 冬眠记

    2017年2月3日,为期7天的冬眠营冬令营正式开幕. 前4天我们见到了各种集训队dalao们的华丽身姿 感受到了听课听不懂睡觉又惭愧的无力感 见到了几百号人近一半玩手机,剩下的一半有一半在睡觉,再剩下 ...

  9. 解决Visual Code安装中文插件失败问题

    早已听闻Visual Code的大名,今日一用,果然不同凡响. 只不过,我的常用开发环境是不联网的,需要离线安装Visual Code和扩展插件. 以前要安装插件只能从VsCode里装,想离线安装比较 ...

  10. MySQL 之 扩展例子

    扩展例子 插入一条记录 INSERT INTO 表名 [(字段1,…,字段n)] VALUES (值1,…,值n) 插入查询的结果 INSERT INTO 表名 (字段1,…,字段n) VALUES ...