POJ1860(ford判环)
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 24243 | Accepted: 8813 |
Description
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations.
Input
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102.
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104.
Output
Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
Sample Output
YES
题意:有N种货币,M种交换点。将货币a换为货币b时所换到的 货币b价值=(货币a价值-手续费c)*利率r。问给定一种货币S,其价值为V,问是否存在交换方式使货币S交换一圈回来之后其价值变大。
思路:将货币视作结点,交换过程视为路径,利用ford算法,判断图中是否存在无限迭代的环。
/*
1860 Accepted 404K 16MS
*/
#include"cstdio"
#include"cstring"
using namespace std;
const int MAXN=;
struct Edge{
int from,to;
double r,c;
}es[MAXN];
int n,E;
bool ford(int s,double v)
{
double d[MAXN];
memset(d,,sizeof(d));
d[s]=v;
while(n--)
{
bool update=false;
for(int i=;i<E;i++)
{
Edge e=es[i];
if(d[e.from]!=&&d[e.to]<(d[e.from]-e.c)*e.r)
{
d[e.to]=(d[e.from]-e.c)*e.r;
update=true;
}
}
if(!update) break;
}
//由ford算法可得:若不存在负环,经过n-1迭代,必能迭代完毕
if(n==-) return true;
return false;
} int main()
{
int N,M,S;
double V;
while(scanf("%d%d%d%lf",&N,&M,&S,&V)!=EOF)
{
E=;
n=N;
for(int i=;i<M;i++)
{
int a,b;
double rab,cab,rba,cba;
scanf("%d%d%lf%lf%lf%lf",&a,&b,&rab,&cab,&rba,&cba);
es[E].from=a,es[E].to=b,es[E].r=rab,es[E++].c=cab;
es[E].from=b,es[E].to=a,es[E].r=rba,es[E++].c=cba;
} if(ford(S,V)) printf("YES\n");
else printf("NO\n");
} return ;
}
若存在越滚越大的环则财富可以增长。
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int MAXN=;
struct Edge{
int to,net;
double r,c;
}es[MAXN];
struct Node{
int nod;
double captial;
Node(){}
Node(int nod,double captial)
{
this->nod=nod;
this->captial=captial;
}
};
int head[MAXN],tot;
int n,m,src;
double wealth;
double d[MAXN];
int cnt[MAXN];
void addedge(int u,int v,double r,double c)
{
es[tot].to=v;
es[tot].r=r;
es[tot].c=c;
es[tot].net=head[u];
head[u]=tot++;
}
bool spfa()
{
memset(cnt,,sizeof(cnt));
memset(d,,sizeof(d));
d[src]=wealth;
queue<Node> que;
que.push(Node(src,wealth));
while(!que.empty())
{
Node now=que.front();que.pop();
for(int i=head[now.nod];i!=-;i=es[i].net)
{
double money=(now.captial-es[i].c)*es[i].r;
if(money>d[es[i].to])
{
d[es[i].to]=money;
cnt[es[i].to]++;
if(cnt[es[i].to]==n) return true;
que.push(Node(es[i].to,money));
}
}
}
return false;
}
int main()
{
while(scanf("%d%d%d%lf",&n,&m,&src,&wealth)!=EOF)
{
memset(head,-,sizeof(head));
tot=;
for(int i=;i<m;i++)
{
int u,v;
double r1,c1,r2,c2;
scanf("%d%d%lf%lf%lf%lf",&u,&v,&r1,&c1,&r2,&c2);
addedge(u,v,r1,c1);
addedge(v,u,r2,c2);
}
if(spfa())
{
printf("YES\n");
}
else
{
printf("NO\n");
}
}
return ;
}
POJ1860(ford判环)的更多相关文章
- POJ3259(ford判环)
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 39078 Accepted: 14369 Descr ...
- hdu4975 A simple Gaussian elimination problem.(正确解法 最大流+删边判环)(Updated 2014-10-16)
这题标程是错的,网上很多题解也是错的. http://acm.hdu.edu.cn/showproblem.php?pid=4975 2014 Multi-University Training Co ...
- hdu4888 Redraw Beautiful Drawings 最大流+判环
hdu4888 Redraw Beautiful Drawings Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/6553 ...
- Leetcode 166. Fraction to Recurring Decimal 弗洛伊德判环
分数转小数,要求输出循环小数 如2 3 输出0.(6) 弗洛伊德判环的原理是在一个圈里,如果一个人的速度是另一个人的两倍,那个人就能追上另一个人.代码中one就是速度1的人,而two就是速度为2的人. ...
- Leetcode 202 Happy Number 弗洛伊德判环解循环
今天先谈下弗洛伊德判环,弗洛伊德判环原来是在一个圈内有两人跑步,同时起跑,一人的速度是另一人的两倍,则那个人能在下一圈追上另一个人,弗洛伊德判环能解数字会循环出现的题,比如说判断一个链表是不是循环链表 ...
- Dwarves (有向图判环)
Dwarves 时间限制: 1 Sec 内存限制: 64 MB提交: 14 解决: 4[提交][状态][讨论版] 题目描述 Once upon a time, there arose a huge ...
- COJ 3012 LZJ的问题 (有向图判环)
传送门:http://oj.cnuschool.org.cn/oj/home/problem.htm?problemID=1042 试题描述: LZJ有一个问题想问问大家.他在写函数时有时候很头疼,如 ...
- Legal or Not(拓扑排序判环)
http://acm.hdu.edu.cn/showproblem.php?pid=3342 Legal or Not Time Limit: 2000/1000 MS (Java/Others) ...
- E - Andrew and Taxi-二分答案-topo判环
E - Andrew and Taxi 思路 :min max 明显二分答案,二分需要破坏的那些边的中机器人数量最多的那个. check 过程建边时直接忽略掉小于 mid 的边,这样去检验有无环存 ...
随机推荐
- PS CC 破解安装教程(亲测可用)
PS CC版本新增了一些更高效的切图工具,比如可以直接右击图层转化为PNG图像 下面介绍一种亲测可用的破解安装教程 软件下载地址:https://pan.baidu.com/s/1dFJFqhj 一. ...
- python 基础 4.0 函数的一般形式及传参
#/usr/bin/python #coding=utf-8 #@Time :2017/10/23 15:58 #@Auther :liuzhenchuan #@File :函数的一般形式.p ...
- 如何理解API,API 是如何工作的
大神博客:https://blog.csdn.net/cumtdeyurenjie/article/details/80211896
- 【BZOJ1776】[Usaco2010 Hol]cowpol 奶牛政坛 树的直径
[BZOJ1776][Usaco2010 Hol]cowpol 奶牛政坛 Description 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N. ...
- 在做RTSP摄像机H5无插件直播中遇到的对接海康摄像机发送OPTIONS心跳时遇到的坑
我们在实现一套EasyNVR无插件直播方案时,选择了采用厂家无关化的通用协议RTSP/Onvif接入摄像机IPC/NVR设备,总所周知,Onvif是摄像机的发现与控制管理协议,Onvif用到的流媒体协 ...
- Linq Group By 多个字段
var counts = dal.QueryStatisticsCount(condition); var result = from p in counts group p by new { Auc ...
- python获取当前的时间
打印出当前的年月日时分秒 print(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) 2018-09-05 09:39: ...
- linux卸载软件
rpm -q -a 查询当前系统安装的所有软件包 rpm -e 软件包名 参数e的作用是使rpm进入卸载模式,对名为某某某的软件报名进行卸载 rpm -e 软件包名 -nodeps 由于系统中各个软件 ...
- STM32 FSMC学习笔记+补充(LCD的FSMC配置)
STM32 FSMC学习笔记+补充(LCD的FSMC配置) STM32 FSMC学习笔记 STM32 FSMC的用法--LCD
- centos下安装wordpress
https://www.jianshu.com/p/2439dc2187b2 https://blog.csdn.net/liuhelong/article/details/79924014