UVA 1541 - To Bet or Not To Bet

题目链接

题意:这题题意真是神了- -。看半天,大概是玩一个游戏,開始在位置0。终点在位置m + 1,每次扔一个硬币,正面走一步,反面走两步,走到的步上有4种情况:

1、向前走n步

2、向后走n步

3、停止一回合

4、无影响

问能在t次机会内,走到终点m + 1(假设跃过也算走到了)的概率。大于0.5。等于0.5,小于0.5相应不同输出

思路:题意懂了就好办了。事实上就是递推就能够了dp[i][j]表示第i次机会,落在j步的概率。然后不断一步步去递推就可以

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 55; int T, m, t, to[N];
double dp[N][N]; int tra() {
char str[10];
scanf("%s", str);
if (str[0] == '0') return 0;
if (str[0] == 'L') return INF;
else {
int num = 0, flag = (str[0] == '+' ? 1 : -1);
for (int i = 1; str[i]; i++)
num = num * 10 + str[i] - '0';
return num * flag;
}
} int main() {
scanf("%d", &T);
while (T--) {
scanf("%d%d", &m, &t);
for (int i = 1; i <= m; i++)
to[i] = tra();
to[m + 1] = 0;
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
for (int i = 0; i <= t; i++) {
for (int j = 0; j <= m; j++) {
if (to[min(m + 1, j + 1)] == INF)
dp[i + 2][min(m + 1, j + 1)] += dp[i][j] * 0.5;
else
dp[i + 1][min(max(0, j + 1 + to[min(m + 1, j + 1)]), m + 1)] += dp[i][j] * 0.5;
if (to[min(m + 1, j + 2)] == INF)
dp[i + 2][min(m + 1, j + 2)] += dp[i][j] * 0.5;
else
dp[i + 1][min(max(0, j + 2 + to[min(m + 1, j + 2)]), m + 1)] += dp[i][j] * 0.5;
}
}
double ans = 0;
for (int i = 0; i <= t; i++) ans += dp[i][m + 1];
if (ans > 0.5) printf("Bet for. ");
else if (ans < 0.5) printf("Bet against. ");
else printf("Push. ");
printf("%.4lf\n", ans);
}
return 0;
}

UVA 1541 - To Bet or Not To Bet(概率递推)的更多相关文章

  1. UVA 10288 - Coupons(概率递推)

    UVA 10288 - Coupons option=com_onlinejudge&Itemid=8&page=show_problem&category=482&p ...

  2. UVA 11021 - Tribles(概率递推)

    UVA 11021 - Tribles 题目链接 题意:k个毛球,每一个毛球死后会产生i个毛球的概率为pi.问m天后,全部毛球都死亡的概率 思路:f[i]为一个毛球第i天死亡的概率.那么 f(i)=p ...

  3. UVa 11021 (概率 递推) Tribles

    Tribble是麻球? 因为事件都是互相独立的,所以只考虑一只麻球. 设f(i)表示一只麻球i天后它以及后代全部死亡的概率,根据全概率公式: f(i) = P0 + P1 * f(i-1) + P2 ...

  4. UVa 557 (概率 递推) Burger

    题意: 有两种汉堡给2n个孩子吃,每个孩子在吃之前要抛硬币决定吃哪一种汉堡.如果只剩一种汉堡,就不用抛硬币了. 求最后两个孩子吃到同一种汉堡的概率. 分析: 可以从反面思考,求最后两个孩子吃到不同汉堡 ...

  5. UVA 557 - Burger(概率 递推)

     Burger  When Mr. and Mrs. Clinton's twin sons Ben and Bill had their tenth birthday, the party was ...

  6. UVA 1642 Magical GCD(gcd的性质,递推)

    分析:对于区间[i,j],枚举j. 固定j以后,剩下的要比较M_gcd(k,j) = gcd(ak,...,aj)*(j-k+1)的大小, i≤k≤j. 此时M_gcd(k,j)可以看成一个二元组(g ...

  7. UVA 12673 Erratic Expansion 奇怪的气球膨胀 (递推)

    不难发现,每过一个小时,除了右下方的气球全都是蓝色以外,其他都和上一个小时的气球是一样的,所以是可以递推的.然后定义一类似个前缀和的东西f(k,i)表示k小时之后上面i行的红气球数.预处理出k小时的红 ...

  8. UVa 557 Burger (概率+递推)

    题意:有 n 个牛肉堡和 n 个鸡肉堡给 2n 个客人吃,在吃之前抛硬币来决定吃什么,如果剩下的汉堡一样,就不用投了,求最后两个人吃到相同的概率. 析:由于正面考虑还要要不要投硬币,太麻烦,所以我们先 ...

  9. UVa 11040 Add bricks in the wall (水题递推)

    题意:给定一个金字塔,除了最后一行,每个数都等于支撑它的两个数的和,现在给奇数行的左数奇数位置,求整个金字塔. 析:很容易看出来,从下往上奇数行等于 a[i][j] = (a[i-2][j-1] - ...

随机推荐

  1. android.os.NetworkOnMainThreadException解决办法

    代码改变世界 在发起Http请求的Activity里面的onCreate函数里面添加如下代码: StrictMode.setThreadPolicy(new StrictMode.ThreadPoli ...

  2. php错误报告

    ; This directive controls whether or not and where PHP will output errors, ; notices and warnings to ...

  3. 【转】SpringMVC访问静态资源的三种方式

    如何你的DispatcherServlet拦截 *.do这样的URL,就不存在访问不到静态资源的问题.如果你的DispatcherServlet拦截“/”,拦截了所有的请求,同时对*.js,*.jpg ...

  4. 【NOIP2016练习】T2 花花的聚会 (树形DP,倍增)

    题意: 花花住在 H 国.H 国有 n 个城市,其中 1 号城市为其首都.城市间有 n 1 条单向道路.从任意一个城市出发,都可以沿着这些单向道路一路走到首都.事实上,从任何一个城市走到首都的路径是唯 ...

  5. net1:post,get方式传值,读写cookie,读XML文件,写script语句,跳转页面,response与request类

    原文发布时间为:2008-07-29 -- 来源于本人的百度文章 [由搬家工具导入] using System;using System.Data;using System.Configuration ...

  6. 转 markdown编写规则、语法

    http://www.jianshu.com/p/1e402922ee32/ Markdown——入门指南 字数2231 阅读307754 评论115 喜欢1350 转载请注明原作者,如果你觉得这篇文 ...

  7. AC日记——Count on a tree bzoj 2588

    Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...

  8. 你也可以当面霸-MVC的原理及特点

    MVC是面试中经常被问到问题,如果能把MVC的原理简单清楚的描述出来,肯定会在面试官的心目中加分. 如果在能画图的情况下,画出一张MVC的流程图,无疑能简化不少概念上的术语,如果不能也不要紧,只要把核 ...

  9. LightOj 1215 Finding LCM

    Discription LCM is an abbreviation used for Least Common Multiple in Mathematics. We say LCM (a, b, ...

  10. HTTPS协议工作流程

    被问到了,复习一下HTTPS的工作流程 提到https,不得不提SSL SSL 1.        安全套接字(Secure Socket Layer,SSL)协议是Web浏览器与Web服务器之间安全 ...