题目描述

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

输入

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

输出

输出一个整数,为所求方案数。

样例输入

2 2 2 4

样例输出

3


题解

莫比乌斯反演+杜教筛

其中xi表示第i个数的取值。

然后这里就可以分块来求。

由于h的范围过大,所以需要使用杜教筛求mu的前缀和,详见 bzoj3944

#include <cstdio>
#include <map>
#define N 1000010
#define mod 1000000007
using namespace std;
typedef long long ll;
const int m = 1000000;
map<int , int> f;
map<int , int>::iterator it;
int mu[N] , sum[N] , prime[N] , tot;
bool np[N];
ll pow(ll x , int y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
int query(int n)
{
if(n <= m) return sum[n];
it = f.find(n);
if(it != f.end()) return it->second;
int i , last , ans = 1;
for(i = 2 ; i <= n ; i = last + 1) last = n / (n / i) , ans -= (last - i + 1) * query(n / i);
return f[n] = ans;
}
int main()
{
int i , j , p , k , l , r , last;
ll ans = 0;
mu[1] = sum[1] = 1;
for(i = 2 ; i <= m ; i ++ )
{
if(!np[i]) mu[i] = -1 , prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= m ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
mu[i * prime[j]] = 0;
break;
}
else mu[i * prime[j]] = -mu[i];
}
sum[i] = sum[i - 1] + mu[i];
}
scanf("%d%d%d%d" , &p , &k , &l , &r) , r /= k , l = (l - 1) / k;
for(i = 1 ; i <= r ; i = last + 1)
{
last = r / (r / i);
if(l >= i) last = min(last , l / (l / i));
ans = (ans + (query(last) - query(i - 1) + mod) % mod * pow((ll)r / i - l / i , p) % mod) % mod;
}
printf("%lld\n" , ans);
return 0;
}

【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛的更多相关文章

  1. luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛

    link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...

  2. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  3. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  4. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  5. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  6. P4450-双亲数,P5221-Product,P6055-[RC-02]GCD【莫比乌斯反演,杜教筛】

    除了最后一题都比较简单就写一起了 P4450-双亲数 题目链接:https://www.luogu.com.cn/problem/P4450 题目大意 给出\(A,B,d\)求有多少对\((a,b)\ ...

  7. 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】

    用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...

  8. 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...

  9. 【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)

    点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌 ...

随机推荐

  1. Aizu 0525 Osenbei(状压+贪心)

    题意:翻煎饼,只能横着翻或者竖着翻.问最多有多少朝上? 行只有10,所以枚举一下2^10的状态,每列取0或1中最大的一个. 在枚举外面把饼翻好,枚举里面指针指一下就好.(位运算或bitset乱搞 #i ...

  2. SPOJ - MATSUM Matrix Summation---二维树状数组

    题目链接: https://vjudge.net/problem/SPOJ-MATSUM 题目大意: 二维数组,两种操作 SET 将某点设置成x SUM 求某个区域之和 解题思路: 这里用二维树状数组 ...

  3. 将bat批处理文件注册成windows服务

    C:\Users\lenovo>sc create MyService binPath= "C:\Program Files\restartOracle.bat"  type ...

  4. tensorfow install error

    http://stackoverflow.com/questions/33655731/error-while-importing-tensorflow-in-python2-7-in-ubuntu- ...

  5. 你不知道的c++11

    随着C++11的发布,C++这门语言有了本质上的提升.C++14,C++17的相继推出,更是让C++这门语言达到了一个新高度.新的标准库设施,新的语法,让我们得以书写更加安全.便捷.高效的程序. 20 ...

  6. 对于新能源Can数据、电池BMS等字节和比特位的解析

    1.对于1个字节(8个bit)以上的数据需要先进行倒序(因为高位在前 低位在后). CanID CanData 排序后的 字节数据 十进制 分辨率(0.005) 偏移量(40) 0x18FEC117 ...

  7. python 时间加8小时后的时间

    eta_temp = one['arrival'].encode('utf-8') fd = datetime.datetime.strptime(eta_temp, "%Y-%m-%dT% ...

  8. 日期增加天数--JS Date

    //日期加天数的方法 //dataStr日期字符串 //dayCount 要增加的天数 //return 增加n天后的日期字符串 function dateAddDays(dataStr,dayCou ...

  9. linux通配符知识

    注意:linux通配符和三剑客(grep,awk,sed)正则表达式是不一样的,因此,代表的意义也是有较大区别的. 通配符一般用户命令行bash环境,而linux正则表达式用于grep,sed,awk ...

  10. Python知识点入门笔记——特色数据类型(元组)

    元组(tuple)是Python的另一种特色数据类型,元组和列表是相似的,可以存储不同类型的数据,但是元组是不可改变的,创建后就不能做任何修改操作. 创建元组 用逗号隔开的就是元组,但是为了美观和代码 ...