Ultra-QuickSort
Time Limit: 7000MS   Memory Limit: 65536K
Total Submissions: 53777   Accepted: 19766

Description

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,

Ultra-QuickSort produces the output

0 1 4 5 9 .

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The
input contains several test cases. Every test case begins with a line
that contains a single integer n < 500,000 -- the length of the input
sequence. Each of the the following n lines contains a single integer 0
≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is
terminated by a sequence of length n = 0. This sequence must not be
processed.

Output

For
every input sequence, your program prints a single line containing an
integer number op, the minimum number of swap operations necessary to
sort the given input sequence.

Sample Input

5
9
1
0
5
4
3
1
2
3
0

Sample Output

6
0

Source

题意:求解一个串的逆序数的个数是多少??

题解:离散化数组变成下标,然后每次将离散化的下标放进树状数组,放进去之后统计小于他的数的个数是多少。用 i - getsum(a[i])即为大于它的数的个数,其中 i 为当前已经插入的数的个数。

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stack>
#include <vector>
#include <algorithm>
using namespace std;
const int N = ; struct Node{
int v,id;
}node[N];
int a[N],c[N],n;
int lowbit(int x){
return x&(-x);
}
void update(int idx,int v){
for(int i=idx;i<=N;i+=lowbit(i)){
c[i]+=v;
}
}
int getsum(int idx){
int sum = ;
for(int i=idx;i>=;i-=lowbit(i)){
sum+=c[i];
}
return sum;
}
int cmp(Node a,Node b){
return a.v<b.v;
}
int main()
{
while(scanf("%d",&n)!=EOF,n){
memset(c,,sizeof(c));
for(int i=;i<=n;i++){
scanf("%d",&node[i].v);
node[i].id = i;
}
sort(node+,node+n+,cmp);
for(int i=;i<=n;i++){
a[node[i].id] = i;
}
long long cnt = ;
for(int i=;i<=n;i++){
update(a[i],);
cnt=cnt+ i - getsum(a[i]);
}
printf("%lld\n",cnt);
}
return ;
}

poj 2299(离散化+树状数组)的更多相关文章

  1. POJ 2299 【树状数组 离散化】

    题目链接:POJ 2299 Ultra-QuickSort Description In this problem, you have to analyze a particular sorting ...

  2. POJ 2299 Ultra-QuickSort (树状数组 && 离散化&&逆序)

    题意 : 给出一个数n(n<500,000), 再给出n个数的序列 a1.a2.....an每一个ai的范围是 0~999,999,999  要求出当通过相邻两项交换的方法进行升序排序时需要交换 ...

  3. POJ 2299 Ultra-QuickSort (树状数组 && 离散化)

    题意 : 给出一个数n(n<500,000), 再给出n个数的序列 a1.a2.....an每一个ai的范围是 0~999,999,999  要求出当通过相邻两项交换的方法进行升序排序时需要交换 ...

  4. POJ 2299 Ultra-QuickSort (树状数组+离散化 求逆序数)

    In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a seque ...

  5. CodeForces 540E - Infinite Inversions(离散化+树状数组)

    花了近5个小时,改的乱七八糟,终于A了. 一个无限数列,1,2,3,4,...,n....,给n个数对<i,j>把数列的i,j两个元素做交换.求交换后数列的逆序对数. 很容易想到离散化+树 ...

  6. Ultra-QuickSort(归并排序+离散化树状数组)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 50517   Accepted: 18534 ...

  7. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  8. BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组

    BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组 Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店.在这里,一盘盘寿司通过传送带依次呈现在小Z眼前.不同的寿 ...

  9. poj-----Ultra-QuickSort(离散化+树状数组)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 38258   Accepted: 13784 ...

随机推荐

  1. 数据结构-二叉树(Binary Tree)

    #include <stdio.h> #include <string.h> #include <stdlib.h> #define LIST_INIT_SIZE ...

  2. A1025 PAT Ranking (25)(25 分)

    A1025 PAT Ranking (25)(25 分) Programming Ability Test (PAT) is organized by the College of Computer ...

  3. Codeforces Round #462 (Div. 2) A Compatible Pair

    A. A Compatible Pair time limit per test1 second memory limit per test256 megabytes Problem Descript ...

  4. 笔记-python-selenium,phantomjs

    笔记-python-selenium,phantomjs 1.      简介 1.1.    selenium selenium是一款自动化测试工具,支持多种语言 为什么爬虫要使用selenium呢 ...

  5. Appium环境搭建及“fn must be a function”问题解决

    由于appium在线安装比较困难,大多数应该是由于FQ造成的吧,索性直接下载appium安装包:http://pan.baidu.com/s/1bpfrvjD nodejs下载也很缓慢,现提供node ...

  6. SVM python小样例

    SVM有很多种实现,但是本章只关注其中最流行的一种实现,即序列最小化(SMO)算法在此之后,我们将介绍如何使用一种称为核函数的方式将SVM扩展到更多的数据集上基于最大间隔的分割数据优点:泛化错误率低, ...

  7. datagrid的基本属性&查询和清空功能的实现

    1.datagrid基本属性 <script charset=UTF-8"> $(function(){ $("#datagrid").datagrid({ ...

  8. 【Linked List Cycle】cpp

    题目: Given a linked list, determine if it has a cycle in it. Follow up:Can you solve it without using ...

  9. 程序集链接器(AL.exe)

    AL.exe使用程序可以生成一个EXE文件或者DLL PE文件(其中只包含对其他模块中的类型进行描述的一个清单). 不要在普通的命令行窗口中编译,请先打开C:\ProgramData\Microsof ...

  10. docker安装中附带安装的其他软件

    aufs-tools: Tools to manage aufs filesystems. aufs的全称是advanced multi-layered unification filesystem, ...