HDU 5236 Article 期望
题意:
你现在要打\(n\)个字符,但是程序随时可能会崩溃。
你可以在恰当的时机按下 \(Ctrl-S\)键,崩溃后,会从最后一次保存的情况继续开始打字。
具体是这样的:
- 在每个第\(i-0.1s(i>0)\)的时候,程序崩溃的概率为\(p\)
- 在每个第\(is(i \geq 0)\)的时候,你可以一口气按下\(x\)个键来存盘
- 在每个第\(i+0.1s(i \geq 0)\)的时候,你可以按下一个键来打字
求采取最优策略下,打完这\(n\)个字符,并且最后存盘,总按键次数的期望。
分析:
先不考虑可以存盘的情况,设\(d(i)\)为打印\(i\)个字符按键次数的期望。
有递推公式:\(d(i)=d(i-1)+1+p \cdot d(i)\)
当你打印出前\(i-1\)个字符,刚刚打完第\(i\)个的时候:
- 有概率\(p\)会崩掉,这时候要重新开始,还需要的按键数的期望为\(d(i)\)
- 有概率\(1-p\)没崩,打印完成了
化简一下得到:\(d(i)=\frac{1}{1-p}d(i-1)+\frac{1}{1-p}\)
然后再考虑存盘的情况,我们枚举存了\(x\)次盘,也就是把这\(n\)个字符分为\(x\)段,每打完一段就存一次盘。
由于\(\frac{1}{1-p}>1\),可以看出\(d(n)\)是指数型增长的,所以就尽可能均匀地把\(n\)个字符分成\(x\)段。
或者也可以求一下\(d(n)\)的通项公式为:\(d(n)=\frac{1}{p(1-p)^n}-\frac{1}{p}\)来验证。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 100000 + 10;
const double INF = 1e20;
double d[maxn];
int main()
{
int T; scanf("%d", &T);
for(int kase = 1; kase <= T; kase++) {
int n, x; double p;
scanf("%d%lf%d", &n, &p, &x);
d[0] = 0;
for(int i = 1; i <= n; i++) d[i] = (d[i - 1] + 1.0) / (1.0 - p);
double ans = INF;
for(int i = 1; i <= n; i++) {
int k = n / i, r = n % i;
ans = min(ans, r*d[k+1] + (i-r)*d[k] + i*x);
}
printf("Case #%d: %.6f\n", kase, ans);
}
return 0;
}
HDU 5236 Article 期望的更多相关文章
- hdu 5236 Article 概率dp
Article Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5236 ...
- HDU 5236 Article(概率DP)
http://acm.hdu.edu.cn/showproblem.php?pid=5236 题意:现在有人要在文本编辑器中输入n个字符,然而这个编辑器有点问题. 在i+0.1s(i>=0)的时 ...
- hdu 5236 Article(概率dp¥)
Article Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Sub ...
- HDU 5236 Article (概率DP+贪心)
题意:要求输入一篇N个字符的文章,对所有非负整数i:每到第i+0.1秒时可以输入一个文章字符,每到第i+0.9秒时有P的概率崩溃(回到开头或者上一个存盘点) 每到第i秒有一次机会可以选择按下X个键存盘 ...
- HDU 5984 数学期望
对长为L的棒子随机取一点分割两部分,抛弃左边一部分,重复过程,直到长度小于d,问操作次数的期望. 区域赛的题,比较基础的概率论,我记得教材上有道很像的题,对1/len积分,$ln(L)-ln(d)+1 ...
- HDU 5570 balls 期望 数学
balls Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5570 De ...
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- hdu 5159 Card (期望)
Problem Description There are x cards on the desk, they are numbered from 1 to x. The score of the c ...
- hdu 5245 Joyful(期望的计算,好题)
Problem Description Sakura has a very magical tool to paint walls. One day, kAc asked Sakura to pain ...
随机推荐
- Unity使用 转载
创建空的ASP.NET MVC3项目,添加对Unity2.0动态库的引用. 方法1:在MSDN上下载Untity2.0,安装后,默认安装在C:\Program Files\Microsoft Unit ...
- 微信小程序干货
1.获取text文本框输入的信息 wxml代码 <view class="weui-cells"> <view class="weui-cell weu ...
- Redis集群批量操作
Redis在3.0版正式引入了集群这个特性,扩展变得非常简单.然而当你开心的升级到3.0后,却发现有些很好用的功能现在工作不了了, 比如我们今天要聊的pipeline功能等批量操作. Redis集群是 ...
- Kendo MVVM 数据绑定(一) attr
Kendo MVVM 数据绑定(一) attr Kendo UI MVVM 数据绑定支持的绑定属性有 attr, checked, click, custom , disabled,enabled, ...
- ERwin DM Reverse Engineer 逆向工程介绍
介绍内容:利用ERwin DM进行对本地 Oracle 数据库的逆向工程 ERwin DM Version:7.3 ERwin DM 提供两种方式的逆向工程方法,分别是基于脚本文件和基于数据库. 下面 ...
- LeetCode House Robber 家庭劫犯(dp)
题意:有一个整数序列,从中挑出一些数字,使得总和是最大,前提是,相邻的两个数字中只能挑其一.比如1 2 3 就只能挑2或者1和3. 思路:很直观的题,dp思想.降低规模,从小规模开始考虑.如果只有两个 ...
- 洛谷 P1784 数独
题目描述 数独是根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行.每一列.每一个粗线宫内的数字均含1-9,不重复.每一道合格的数独谜题都有且仅有唯一答案,推理方法也以此为基础,任何无 ...
- 使用EventLog组件向本机现有日志中添加条目
实现效果: 知识运用: EventLog组件的MachineName属性 //获取或设置在其上读取或写入事件的计算机名称 public string MachineName {get;set; } ...
- HTML5 跨文档消息传输
对窗口对象的message事件进行监听 window.addEventListener("message", function(event) { // 处理程序代码 }, fals ...
- java String中的replace(oldChar,newChar) replace(CharSequence target,CharSequence replacement) replaceAll replaceFirst 面试题:输入英文语句,单词首字符大写后输出 char String int 相互转换
package com.swift; import java.util.Scanner; public class FirstChat_ToCaps_Test { public static void ...