【题解】【总结】P1330 封锁阳光大学 &&图论小总结

这道题其实有一点点难度,不过我能经过思考做出来说明还是没有普及组\(D1T1\)难度的。

考虑一条边的两边要有且仅有一个点被选中...这不就是染色吗?想到此,聪明的你一定就知道怎么做了。

这题唯一的坑点就是不一定图是联通的,所以要\(for\)一下所有点去\(bfs\)。

这种题我还\(wa\)了一次,而且如果不是我下了数据还调不出来...

思考一下为什么没有一遍过此题,还是因为思维不够完善。图论的题目,有什么坑点呢?在这里总结一下:

  • 图不联通。有这个图的连通性意识就不会被坑。这里包括了森林的情况。
  • 有自环的重边。这个是毒瘤出题人干的事情,不能被坑了。
  • 存在负环,要判断一下。
  • 树的根被指定了!
  • 边数可能比你想像的要多。
  • \(spfa\)已经死了QAQ!
  • \(fr\)和\(to\)的位置调换了。凉心出题人!

解决图论的问题,可以通过什么办法呢?

  • \(Tarjin\)求环求强连通分量。
  • 最短路算法。(还有那种取对数的)
  • 缩点+\(DAG\) \(DP\)
  • 拓扑排序
  • 并查集
  • 最小生成树,实际上和拟阵联系起来。
  • 树形\(dp\),实际上和上面那个很像的
  • 树上倍增。\(lca\),\(st\)表啊之类的。
  • 树上差分。我也不是很熟。
  • 点分治。解决树上路径计数问题等。
  • 树链剖分。同样也是树上路径,还可以顺便解决子树等问题。
  • 树上莫队。神奇的算法。
  • 正难则反!图论的题维护加边比较容易,维护减边就比较麻烦。反着来!
  • 网络流。(主要是建模难 QAQ)
#include<bits/stdc++.h>

using namespace std;
#define RP(t,a,b) for(register int t=(a),edd=(b);t<=edd;++t)
#define DRP(t,a,b) for(register int t=(a),edd=(b);t>=edd;--t)
#define ERP(t,a) for(register int t=head[a];t;t=e[t].nx)
#define Max(a,b) ((a)<(b)?(b):(a))
#define Min(a,b) ((a)<(b)?(a):(b))
#define midd register int mid=(l+r)>>1
#define TMP template < class ccf > TMP inline ccf qr(ccf b){
char c=getchar();
int q=1;
ccf x=0;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=x*10+c-48,c=getchar();
return q==-1?-x:x;
}
const int maxn=10005;
const int maxm=100005;
struct E{
int to,nx;
}e[maxm<<1];
int head[maxn];
int col[maxn];
int cnt;
int n,m; inline void add(int fr,int to,bool f){
e[++cnt]=(E){to,head[fr]};
head[fr]=cnt;
if(f)
add(to,fr,0);
} queue < int > q;
inline int bfs(int S){
q.push(S);
col[S]=-1;
int colcnt=0,tolcnt=0;
while(!q.empty()){
register int now=q.front();
colcnt+=(col[now]==1);
tolcnt++;
q.pop();
ERP(t,now)
if(col[e[t].to]!=0&&col[e[t].to]!=-col[now])
return -1;
else
if(col[e[t].to]==0)
q.push(e[t].to),col[e[t].to]=-col[now];
}
return Min(colcnt,tolcnt-colcnt);
} int main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
n=qr(1);
m=qr(1);
for(register int t=1,t1,t2;t<=m;++t){
t1=qr(1);
t2=qr(1);
add(t1,t2,1);
}
int ans=0,k;
RP(t,1,n)
if(col[t]==0)
if((k=bfs(t))==-1)
return puts("Impossible"),0;
else
ans+=k;
cout<<ans<<endl;
return 0;
}

【总结】图论小总结【题解】P1330封锁阳关大学的更多相关文章

  1. 洛谷P1330 封锁阳光大学(二分图染色)

    P1330 封锁阳光大学 题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构 ...

  2. 洛谷——P1330 封锁阳光大学

    P1330 封锁阳光大学 题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构 ...

  3. P1330 封锁阳光大学(染色问题)

    P1330 封锁阳光大学 题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构 ...

  4. 二分图染色模板(P1330 封锁阳光大学)

    二分图染色模板(P1330 封锁阳光大学) 题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校 ...

  5. luogu P1330 封锁阳光大学 x

    P1330 封锁阳光大学 题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构 ...

  6. P1330 封锁阳光大学——深度优先搜索DFS

    P1330 封锁阳光大学 题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由 \(n ...

  7. 洛谷 P1330 封锁阳光大学题解

    题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构成的无向图,N个点之间由M ...

  8. 洛谷P1330 封锁阳光大学 [图论,染色]

    题目传送门 封锁阳光大学 题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构 ...

  9. P1330 封锁阳光大学[搜索+染色]

    题目来源:洛谷 题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构成的无向图 ...

随机推荐

  1. java反射和代理

    这一篇我们说说反射和动态代理,为什么这两个要一起说呢?因为动态代理中会用到反射,而且java中反射的用处太多了,基本上无处不在,而且功能十分强大: 1.反射简介 反射是什么呢?一般都是很专业的说法:在 ...

  2. 生成唯一标识符 ,通用唯一标识符 UUID

    import java.util.UUID; /** * UUID生成工具 * */ public final class UuidGenUtils { /** * 生成一个UUID串(32个字符,其 ...

  3. 求用delphi编写的LRC校验位算法函数,急!!!

    求用delphi编写的LRC校验位算法函数,急!!! 某命令串为":010200000001FC" 其16进制为“3A 30 31 30 32 30 30 30 30 30 30 ...

  4. delphi如何把一个整数转化为4个十六进制字节

    var   s:string;   len:Integer;   AData:TBytes; begin        s:=IntToHex(149259,6);//返回6位字符串     len  ...

  5. ElasticSearch搜索term和terms的区别

    今天同事使用ES查询印地语的文章.发现查询报错,查询语句和错误信息如下: 查询语句:{    "query":{        "bool":{         ...

  6. 【前端阅读】——《程序员思维修炼》摘记&读后感&思维导图

    前言:这是一本介绍如何用脑的书,并从思维的角度(以程序员为例),介绍如何从新手成为专家.作者带领着读者(我)共同经历一次有关认知科学.神经学.学习和行为理论的旅程,探索人类大脑令人 惊奇的工作的机制, ...

  7. Android--数据库数据显示至屏幕

    MainActivity.java 这段代码的作用是从数据库中获取到数据并显示在界面上 import java.util.ArrayList; import java.util.List; impor ...

  8. C语言数据类型的转换

    C语言的类型转换,一个是强制类型进行转换,而在这里要介绍的是自动的数据类型的转换,自动的数据类型转换很多时候是发生在多种数据类型混合使用的时候就会进行类型的转换,这样就会带来不能控制的结果,所以必须进 ...

  9. React学习之redux

    在阅读本文之前,希望大家对以下知识点能提前有所了解并且上好厕所(文章有点长): 状态提升的概念 react高阶组件(函数) es6基础 pure 组件(纯函数) Dumb 组件 React.js的co ...

  10. 【转载】Asp.Net页面生命周期

    一.什么是Asp.Net页面生命周期 当我们在浏览器地址栏中输入网址,回车查看页面时,这时会向服务器端(IIS)发送一个request请求,服务器就会判断发送过来的请求页面,  完全识别 HTTP 页 ...