题目戳这里

N句话题意

有N个人,k个限制,有五种限制

如果X=1, 表示第A个小朋友的糖果必须和第B个小朋友的糖果一样多;

如果X=2, 表示第A个小朋友的糖果必须少于第B个小朋友的糖果;

如果X=3, 表示第A个小朋友的糖果必须不少于第B个小朋友的糖果;

如果X=4, 表示第A个小朋友的糖果必须多于第B个小朋友的糖果;

如果X=5, 表示第A个小朋友的糖果必须不多于第B个小朋友的糖果;

求满足所有要求需要最少的糖果数(每个人至少为1)

**Solution**

一个差分约束题目,然额本蒟蒻还不是很会。首先分析限制条件,很明显2和4,3和5是一样的限制,并且要求最少的糖果数。那么不少于(多于)我们就建0边,而要求少于(多于)我们就建权值为1的边,很明显这样所需要的糖果最少。建好图后我们只需要跑一遍最长路即可。

为什么是最长路呢?看看下面这张图,(也是盗的)。

图中dis[1]如果是最短路为1,但很显然1点至少需要两个糖果。(很显然,因为肯定得满足约束最多的条件的情况才是合法的!)。

注:后面0向1→n建边时一定要倒序。

Coding

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6+10;
int head[N],n,m,cnt;
struct limit
{
int to,next;
long long w;
}e[N*5];
void add(int x,int y,long long w)
{
e[++cnt].to=y,e[cnt].next=head[x],e[cnt].w=w;
head[x]=cnt;
}
int dis[N],tot[N];
long long vis[N];
queue<int> q;
bool SPFA()
{
q.push(0);
dis[0]=0;
vis[0]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
tot[u]++;
if(tot[u]==n-1) {cout<<-1; return 0;}
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(dis[u]+e[i].w>dis[v])
{
dis[v]=dis[u]+e[i].w;
if(!vis[v]) q.push(v),vis[v]=1;
}
}
}
return 1;
}
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
int x,y,opt;
scanf("%d%d%d",&opt,&x,&y);
if(opt==1) add(x,y,0),add(y,x,0);
if(opt==2)
{
if(x==y) {cout<<-1; return 0;}
add(x,y,1);
}
if(opt==3) add(y,x,0);
if(opt==4)
{
if(x==y) {cout<<-1; return 0;}
add(y,x,1);
}
if(opt==5) add(x,y,0);
}
for(int i=n;i;i--) add(0,i,1);
if(!SPFA()) return 0;
long long ans=0;
for(int i=1;i<=n;i++)
ans+=dis[i];
cout<<ans;
return 0;
}

洛谷 3275 [SCOI2011]糖果的更多相关文章

  1. BZOJ2330或洛谷3275 [SCOI2011]糖果

    BZOJ原题链接 洛谷原题链接 很明显的差分约束,但数据范围较大,朴素\(SPFA\)判正环求解会\(T\)(理论上如此,但我看到有挺多人用朴素的还跑得挺快..),所以需要优化. 我们所建立的有向图中 ...

  2. 洛谷P3275 [SCOI2011]糖果(差分约束,最长路,Tarjan,拓扑排序)

    洛谷题目传送门 差分约束模板题,等于双向连0边,小于等于单向连0边,小于单向连1边,我太蒻了,总喜欢正边权跑最长路...... 看遍了讨论版,我是真的不敢再入复杂度有点超级伪的SPFA的坑了 为了保证 ...

  3. 洛谷——P3275 [SCOI2011]糖果

    P3275 [SCOI2011]糖果 差分约束模板题,基本思路就是$d[v]+w[v,u]<=d[u]$,$Spfa$更新方法, 有点套路的是要建立原点,即图中不存在的点来向每个点加边,但同样这 ...

  4. 【POJ 3159】Candies&&洛谷P3275 [SCOI2011]糖果

    来补一下自己很久以前那个很蒟蒻很蒟蒻的自己没有学懂的知识 差分约束,说白了就是利用我们在求最短路的一个\(relax\)操作时的判断的原理 \[dis[v]>dis[u]+disj(u,v)\] ...

  5. 题解——洛谷P3275 [SCOI2011]糖果

    一道条件非常多的差分约束 把\( a < b \)转化为\( a-b \le -1\)就可做了 \( a>b \)的情况同理 若有负环则无解输出-1 注意本题中要求每个人都有糖果 所以假设 ...

  6. 洛谷P3275 [SCOI2011]糖果 [差分约束系统]

    题目传送门 糖果 题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比 ...

  7. 洛谷P3275 [SCOI2011]糖果(差分约束)

    题目描述 幼儿园里有 $N$ 个小朋友,$lxhgww $老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...

  8. 洛谷P3275 [SCOI2011]糖果

    差分约束大坑题 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring ...

  9. 洛谷 P3275 [SCOI2011]糖果

    题目链接 题解 差分约束 学过的应该都会做 不会的自行百度,这里不多讲 opt=1 连一条长度为0的双向边 opt=2 (u->v) \(len=-1\) opt=3 (v->u) \(l ...

随机推荐

  1. 分布式配置中心介绍--Spring Cloud学习第六天(非原创)

    文章大纲 一.分布式配置中心是什么二.配置基本实现三.Spring Cloud Config服务端配置细节(一)四.Spring Cloud Config服务端配置细节(二)五.Spring Clou ...

  2. Maven错误“Failed to execute goal org.apache.maven.plugins:maven-archetype-plugin:2.4:create ”解决

    用maven3新建一个项目时,输入的命令如下: mvn archetype:create 出现错误如下: [ERROR] Failed to execute goal org.apache.maven ...

  3. Dedecms 数据库结构分析

    本文主要是为了今后对Dedecms做二次开发所写.安装后dedecms的数据库结构,如(图1)所示, 安装后的dedecms一共有 86 张数据表. 主要数据结构表 dede_addonarticle ...

  4. kali渗透测试基础

    一侦查 研究如何收集有关目标的情报,比如开发那些端口用来通信,托管在哪里,提供给客户的服务类型等. 交付内容应该包括需要攻击的所有目标资产清单,与那些资产关联的应用,使用的服务以及可能的资产所有者. ...

  5. OpenSceneGraph-3.3.3

    OpenSceneGraph-3.3.3, [/b]released on 19th December 2014, key deliverables in this dev release are: ...

  6. 2017.2.20 activiti实战--第二章--搭建Activiti开发环境及简单示例(一)搭建开发环境

    学习资料:<Activiti实战> 第一章 认识Activiti 2.1 下载Activiti 官网:http://activiti.org/download.html 进入下载页后,可以 ...

  7. 转: CSRF(Cross Site Request Forgery 跨站域请求伪造) 背景与介绍

    from:  https://www.ibm.com/developerworks/cn/web/1102_niugang_csrf/   在 IBM Bluemix 云平台上开发并部署您的下一个应用 ...

  8. GDI+重绘笔记

    有的控件不能重载 OnPaint,设置 ControlStyles.UserPaint = true即可 //如果为 true,控件将自行绘制,而不是通过操作系统来绘制. //如果为 false,将不 ...

  9. .NET Core R2安装及示例教程

    .NET Core R2安装及示例教程 Install for Windows - Visual Studio 2015 1 Download Visual Studio 2015 Make sure ...

  10. HDOJ--2112--

    HDU Today Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...