题目戳这里

N句话题意

有N个人,k个限制,有五种限制

如果X=1, 表示第A个小朋友的糖果必须和第B个小朋友的糖果一样多;

如果X=2, 表示第A个小朋友的糖果必须少于第B个小朋友的糖果;

如果X=3, 表示第A个小朋友的糖果必须不少于第B个小朋友的糖果;

如果X=4, 表示第A个小朋友的糖果必须多于第B个小朋友的糖果;

如果X=5, 表示第A个小朋友的糖果必须不多于第B个小朋友的糖果;

求满足所有要求需要最少的糖果数(每个人至少为1)

**Solution**

一个差分约束题目,然额本蒟蒻还不是很会。首先分析限制条件,很明显2和4,3和5是一样的限制,并且要求最少的糖果数。那么不少于(多于)我们就建0边,而要求少于(多于)我们就建权值为1的边,很明显这样所需要的糖果最少。建好图后我们只需要跑一遍最长路即可。

为什么是最长路呢?看看下面这张图,(也是盗的)。

图中dis[1]如果是最短路为1,但很显然1点至少需要两个糖果。(很显然,因为肯定得满足约束最多的条件的情况才是合法的!)。

注:后面0向1→n建边时一定要倒序。

Coding

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6+10;
int head[N],n,m,cnt;
struct limit
{
int to,next;
long long w;
}e[N*5];
void add(int x,int y,long long w)
{
e[++cnt].to=y,e[cnt].next=head[x],e[cnt].w=w;
head[x]=cnt;
}
int dis[N],tot[N];
long long vis[N];
queue<int> q;
bool SPFA()
{
q.push(0);
dis[0]=0;
vis[0]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
tot[u]++;
if(tot[u]==n-1) {cout<<-1; return 0;}
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(dis[u]+e[i].w>dis[v])
{
dis[v]=dis[u]+e[i].w;
if(!vis[v]) q.push(v),vis[v]=1;
}
}
}
return 1;
}
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
int x,y,opt;
scanf("%d%d%d",&opt,&x,&y);
if(opt==1) add(x,y,0),add(y,x,0);
if(opt==2)
{
if(x==y) {cout<<-1; return 0;}
add(x,y,1);
}
if(opt==3) add(y,x,0);
if(opt==4)
{
if(x==y) {cout<<-1; return 0;}
add(y,x,1);
}
if(opt==5) add(x,y,0);
}
for(int i=n;i;i--) add(0,i,1);
if(!SPFA()) return 0;
long long ans=0;
for(int i=1;i<=n;i++)
ans+=dis[i];
cout<<ans;
return 0;
}

洛谷 3275 [SCOI2011]糖果的更多相关文章

  1. BZOJ2330或洛谷3275 [SCOI2011]糖果

    BZOJ原题链接 洛谷原题链接 很明显的差分约束,但数据范围较大,朴素\(SPFA\)判正环求解会\(T\)(理论上如此,但我看到有挺多人用朴素的还跑得挺快..),所以需要优化. 我们所建立的有向图中 ...

  2. 洛谷P3275 [SCOI2011]糖果(差分约束,最长路,Tarjan,拓扑排序)

    洛谷题目传送门 差分约束模板题,等于双向连0边,小于等于单向连0边,小于单向连1边,我太蒻了,总喜欢正边权跑最长路...... 看遍了讨论版,我是真的不敢再入复杂度有点超级伪的SPFA的坑了 为了保证 ...

  3. 洛谷——P3275 [SCOI2011]糖果

    P3275 [SCOI2011]糖果 差分约束模板题,基本思路就是$d[v]+w[v,u]<=d[u]$,$Spfa$更新方法, 有点套路的是要建立原点,即图中不存在的点来向每个点加边,但同样这 ...

  4. 【POJ 3159】Candies&&洛谷P3275 [SCOI2011]糖果

    来补一下自己很久以前那个很蒟蒻很蒟蒻的自己没有学懂的知识 差分约束,说白了就是利用我们在求最短路的一个\(relax\)操作时的判断的原理 \[dis[v]>dis[u]+disj(u,v)\] ...

  5. 题解——洛谷P3275 [SCOI2011]糖果

    一道条件非常多的差分约束 把\( a < b \)转化为\( a-b \le -1\)就可做了 \( a>b \)的情况同理 若有负环则无解输出-1 注意本题中要求每个人都有糖果 所以假设 ...

  6. 洛谷P3275 [SCOI2011]糖果 [差分约束系统]

    题目传送门 糖果 题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比 ...

  7. 洛谷P3275 [SCOI2011]糖果(差分约束)

    题目描述 幼儿园里有 $N$ 个小朋友,$lxhgww $老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...

  8. 洛谷P3275 [SCOI2011]糖果

    差分约束大坑题 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring ...

  9. 洛谷 P3275 [SCOI2011]糖果

    题目链接 题解 差分约束 学过的应该都会做 不会的自行百度,这里不多讲 opt=1 连一条长度为0的双向边 opt=2 (u->v) \(len=-1\) opt=3 (v->u) \(l ...

随机推荐

  1. 代码Rework中的反思

    以前编码只是关注能写出来,并让程序运行就完事,这是非常错误的想法. 让我们重新思考软件设计中的一些问题吧! 软件设计就像设计房屋,设计器具,是一个道理.软件的复杂度和bug完全是自己造成的,要设计好的 ...

  2. luogu P1260 工程规划(luogu wa)don't know way

    题目描述 造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000).由于对一些任务的起始条件有着严格的限制,所以每个任务的起始时间T1,T2,…,Tn并不是 ...

  3. BZOJ 4011 HNOI2015 落忆枫音

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=4011 题目很长,写得也很有诗意与浪漫色彩,让我们不禁感叹出题人是一个多么英俊潇洒的人. 所 ...

  4. 【Objective-C Runtime动态加载】---动态创建类Class

    a.使用objc_allocateClassPair创建一个类Class    const char * className = "Calculator";    Class kc ...

  5. Copy Records From One Data Block To Another Data Block In Oracle Forms

    In this tutorial you will learn to copy the records from one data block to another data block on sam ...

  6. EasyMvc入门教程-基本控件说明(6)进度条

    进度条的发明是很牛逼的,就如12306采用了队列解决了系统崩溃的问题一样..:) 进度条大家都见过,那么我们先来实现一个简单的进度条,请看例子: @Html.Q().Progress().Value( ...

  7. GridView.setChoiceMode(GridView.CHOICE_MODE_MULTIPLE_MODAL)不兼容低版本号系统解决方式

    项目开发中须要使用GridView批处理操作,多项选择. 可是GridView.setChoiceMode(GridView.CHOICE_MODE_MULTIPLE_MODAL)不兼容低版本号. 找 ...

  8. setTag和findViewByTag的使用具体解释

    在使用ListView或者GridView的时候. 假设想要在Aciviry中获取到Item中的子View,比較频繁的使用是:getChildAt(int position): 之前自己差点儿不会去使 ...

  9. JAVA Eclipse 出现 load id=gralloc != hmi-id=gralloc怎么办

    一般是应用程序权限导致的,在Manifest.xml文件中,targetSdkVersion设置不正确,你可以直接删掉这个信息                              

  10. 基于SNMP的交换机入侵的内网渗透

    前言:局域网在管理中常常使用SNMP协议来进行设备的管理和监控,而SNMP的弱点也成为了我们此次渗透的关键. 使用SNMP管理设备只需要一个community string,而这个所谓的密码经常采用默 ...