You are given a tree consisting of nn vertices. A number is written on each vertex; the number on vertex ii is equal to aiai.

Let's denote the function g(x,y)g(x,y) as the greatest common divisor of the numbers written on the vertices belonging to the simple path from vertex xx to vertex yy(including these two vertices).

For every integer from 11 to 2⋅1052⋅105 you have to count the number of pairs (x,y)(x,y) (1≤x≤y≤n)(1≤x≤y≤n) such that g(x,y)g(x,y) is equal to this number.

Input

The first line contains one integer nn — the number of vertices (1≤n≤2⋅105)(1≤n≤2⋅105).

The second line contains nn integers a1a1, a2a2, ..., anan (1≤ai≤2⋅105)(1≤ai≤2⋅105) — the numbers written on vertices.

Then n−1n−1 lines follow, each containing two integers xx and yy (1≤x,y≤n,x≠y)(1≤x,y≤n,x≠y)denoting an edge connecting vertex xx with vertex yy. It is guaranteed that these edges form a tree.

Output

For every integer ii from 11 to 2⋅1052⋅105 do the following: if there is no pair (x,y)(x,y) such that x≤yx≤y and g(x,y)=ig(x,y)=i, don't output anything. Otherwise output two integers: iiand the number of aforementioned pairs. You have to consider the values of ii in ascending order.

See the examples for better understanding.

Examples

Input
3
1 2 3
1 2
2 3
Output
1 4
2 1
3 1
Input
6
1 2 4 8 16 32
1 6
6 3
3 4
4 2
6 5
Output
1 6
2 5
4 6
8 1
16 2
32 1
Input
4
9 16 144 6
1 3
2 3
4 3
Output
1 1
2 1
3 1
6 2
9 2
16 2
144 1

题意:求所有简单路径的GCD,统计数量。

思路:不难想到是分治,问题转化为多个小问题:统计经过某点的路径的GCD,由于GCD具有收敛性,不同GCD的数量级是log级别的,虽然有多个链,但感觉gcd是数量就算不会太多,2333,我猜复杂度不超过O(N*logN*logN*logN)级别吧。所以对于当前子树,每次访问一条链的时候统计这条链和之前所有GCD的gcd。。。。说不清楚,反正一想就会相通的东西。

(具有收敛性的有:GCD,或,且...)

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=;
const int inf=0x7FFFFFFF;
int Laxt[maxn],Next[maxn<<],To[maxn<<],cnt,N,sn;
int a[maxn],sz[maxn],son[maxn],vis[maxn],root; ll ans[maxn];
map<int,int>mp,tp;
map<int,int>::iterator it1,it2;
inline void read(int &x) {
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c<=''&&c>='') x=(x<<)+(x<<)+c-'',c=getchar();
}
void add(int u,int v){
Next[++cnt]=Laxt[u];
Laxt[u]=cnt; To[cnt]=v;
}
void getroot(int u,int fa) //找重心
{
sz[u]=; son[u]=;
for(int i=Laxt[u];i;i=Next[i]){
if(To[i]!=fa&&!vis[To[i]]){
getroot(To[i],u);
sz[u]+=sz[To[i]];
son[u]=max(son[u],sz[To[i]]);
}
}
son[u]=max(son[u],sn-son[u]);
if(root==||son[root]>son[u]) root=u;
}
void getans(int u,int fa,int num) //对于当前链产生的新GCD
{
tp[num]++;
for(int i=Laxt[u];i;i=Next[i]){
if(!vis[To[i]]&&To[i]!=fa){
getans(To[i],u,__gcd(num,a[To[i]]));
}
}
}
void solve(int u) //解决以u为根的子问题
{
mp.clear(); mp[a[u]]++; ans[a[u]]++;
for(int i=Laxt[u];i;i=Next[i])
if(!vis[To[i]]) {
tp.clear(); getans(To[i],u,__gcd(a[u],a[To[i]]));
for(it1=mp.begin();it1!=mp.end();it1++)
for(it2=tp.begin();it2!=tp.end();it2++){
int g=__gcd((*it1).first,(*it2).first);
ans[g]+=(ll)(*it1).second*(*it2).second;
}
for(it2=tp.begin();it2!=tp.end();it2++)
mp[(*it2).first]+=(*it2).second;
}
}
void dfs(int u) //分治
{
vis[u]=; solve(u);
for(int i=Laxt[u];i;i=Next[i]){
if(vis[To[i]]) continue;
root=; sn=sz[To[i]];
getroot(To[i],); dfs(root);
}
}
int main()
{
read(N); int u,v,Max=;
for(int i=;i<=N;i++) read(a[i]),Max=max(Max,a[i]);
for(int i=;i<N;i++) {
read(u);read(v);
add(u,v); add(v,u);
}
root=; sn=N; getroot(,); dfs(root);
for(int i=;i<=Max;i++) if(ans[i]) printf("%d %I64d\n",i,ans[i]);
return ;
}

CodeForces990G:GCD Counting(树分治+GCD)的更多相关文章

  1. CF1101D GCD Counting 点分治+质因数分解

    题意:求最长的树上路径点值的 $gcd$ 不为 $1$ 的长度. 由于只要求 $gcd$ 不为一,所以只要 $gcd$ 是一个大于等于 $2$ 的质数的倍数就可以了. 而我们发现 $2\times 1 ...

  2. CF990G GCD Counting 点分治+容斥+暴力

    只想出来 $O(nlogn\times 160)$ 的复杂度,没想到还能过~ Code: #include <cstdio> #include <vector> #includ ...

  3. CF1101D GCD Counting

    题目地址:CF1101D GCD Counting zz的我比赛时以为是树剖或者点分治然后果断放弃了 这道题不能顺着做,而应该从答案入手反着想 由于一个数的质因子实在太少了,因此首先找到每个点的点权的 ...

  4. CF EDU 1101D GCD Counting 树形DP + 质因子分解

    CF EDU 1101D GCD Counting 题意 有一颗树,每个节点有一个值,问树上最长链的长度,要求链上的每个节点的GCD值大于1. 思路 由于每个数的质因子很少,题目的数据200000&l ...

  5. hdu 5869 区间不同GCD个数(树状数组)

    Different GCD Subarray Query Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K ( ...

  6. Ultimate Weirdness of an Array CodeForces - 671C (gcd,线段树)

    大意: 定义一个数列的特征值为两个数gcd的最大值, $f(l,r)$表示数列删除区间$[l,r]$的元素后剩余元素的特征值, 求$\sum_{i=1}^n\sum_{j=i}^n{f(i,j)}$ ...

  7. Educational Codeforces Round 45 (Rated for Div. 2) G - GCD Counting

    G - GCD Counting 思路:我猜测了一下gcd的个数不会很多,然后我就用dfs回溯的时候用map暴力合并就好啦. 终判被卡了MLE.....  需要每次清空一下子树的map... #inc ...

  8. HDU 5869.Different GCD Subarray Query-区间gcd+树状数组 (神奇的标记右移操作) (2016年ICPC大连网络赛)

    树状数组... Different GCD Subarray Query Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/6 ...

  9. D - 小Z的加油店 线段树+差分+GCD

    D - 小Z的加油店 HYSBZ - 5028   这个题目是一个线段树+差分+GCD 推荐一个差分的博客:https://www.cnblogs.com/cjoierljl/p/8728110.ht ...

随机推荐

  1. Unity -- Collider(碰撞器与触发器)

    (2d与3d的Collider可以相互存在,但是无法相互协作,如2d是无法检测3d的,反之,一样) 在目前掌握的情况分析,在Unity中参与碰撞的物体分2大块:1.发起碰撞的物体.2.接收碰撞的物体. ...

  2. Redis 数据结构解析和命令指南

    命令參考文档:redis commands - 你或许已经知道Redis并非简单的key-value存储.实际上他是一个数据结构server.支持不同类型的值. 也就是说.你不必只把字符串当作键所指向 ...

  3. linux系统中mysql自动备份脚本

    mysql数据库中存储着网站最核心最宝贵的数据,如果因为不可预测的原因导致数据损坏或丢失,对一个网站的打击是毁灭性的,一次又一次的教训提醒着我们一定要做好备份,但是手工备份确实比较麻烦,每天都要手工操 ...

  4. iOS UI08_TableView界面传值

    实现两个界面之间内容的传递 // // MainViewController.m // UI08_TableView界面传值 // // Created by dllo on 15/8/7. // C ...

  5. CloudStack管理VMware遇到的问题

    话说前段安装了CloudStack并使用它来管理XenServer,这回要用它来管理VMware.虽说之前遇到了大大小小的问题都攻克了,但在VMware这一块还是遇到了一些麻烦. 在创建资源域.加入集 ...

  6. Quality control

    定义测试         为测试添加测试项     测试项目按类型分2种 Qualitative 定性,描述类的,比如颜色,是,否 Quantitative 定量,有明确的衡量         定性 ...

  7. 通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core? .Net Web开发技术栈

    通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core?   什么是.NET?什么是.NET Framework?本文将从上往下,循序渐进的介绍一系列相关.NET的概念 ...

  8. 轻松搞定RabbitMQ(三)——消息应答与消息持久化

    转自 http://blog.csdn.net/xiaoxian8023/article/details/48710653 这个官网的第二个例子中的消息应答和消息持久化部分.我把它摘出来作为单独的一块 ...

  9. shell grep正则匹配汉字

    Shell grep正则匹配中文 测试文本 demo_exe.c,内容如下,需要注意保存的编码格式,对输出到终端有影响: 我们中文操作系统ASNI默认是GBK的. #include<stdio. ...

  10. Windows下利用CMake和VS2013编译OpenCV

    转载自:http://www.chengxulvtu.com/2014/03/19/windows_build-opencv-with-cmake-and-vs2013.html   获取OpenCV ...