题目链接:

D. Bear and Polynomials

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Limak is a little polar bear. He doesn't have many toys and thus he often plays with polynomials.

He considers a polynomial valid if its degree is n and its coefficients are integers not exceeding k by the absolute value. More formally:

Let a0, a1, ..., an denote the coefficients, so . Then, a polynomial P(x) is valid if all the following conditions are satisfied:

  • ai is integer for every i;
  • |ai| ≤ k for every i;
  • an ≠ 0.

Limak has recently got a valid polynomial P with coefficients a0, a1, a2, ..., an. He noticed that P(2) ≠ 0 and he wants to change it. He is going to change one coefficient to get a valid polynomial Q of degree n that Q(2) = 0. Count the number of ways to do so. You should count two ways as a distinct if coefficients of target polynoms differ.

Input

The first line contains two integers n and k (1 ≤ n ≤ 200 000, 1 ≤ k ≤ 109) — the degree of the polynomial and the limit for absolute values of coefficients.

The second line contains n + 1 integers a0, a1, ..., an (|ai| ≤ k, an ≠ 0) — describing a valid polynomial . It's guaranteed that P(2) ≠ 0.

Output

Print the number of ways to change one coefficient to get a valid polynomial Q that Q(2) = 0.

Examples
input
3 1000000000
10 -9 -3 5
output
3
input
3 12
10 -9 -3 5
output
2
input
2 20
14 -7 19
output
0
Note

In the first sample, we are given a polynomial P(x) = 10 - 9x - 3x2 + 5x3.

Limak can change one coefficient in three ways:

  1. He can set a0 =  - 10. Then he would get Q(x) =  - 10 - 9x - 3x2 + 5x3 and indeed Q(2) =  - 10 - 18 - 12 + 40 = 0.
  2. Or he can set a2 =  - 8. Then Q(x) = 10 - 9x - 8x2 + 5x3 and indeed Q(2) = 10 - 18 - 32 + 40 = 0.
  3. Or he can set a1 =  - 19. Then Q(x) = 10 - 19x - 3x2 + 5x3 and indeed Q(2) = 10 - 38 - 12 + 40 = 0.

In the second sample, we are given the same polynomial. This time though, k is equal to 12 instead of 109. Two first of ways listed above are still valid but in the third way we would get |a1| > k what is not allowed. Thus, the answer is 2 this time.

题意:

问能不能改变一个系数使Q(2)=0;

思路:

像二进制那样都变成0,-1,+1,都转移到n位上;再从高位到低位计算;

AC代码:

/*
2014300227 658D - 26 GNU C++11 Accepted 576 ms 5308 KB
*/
#include <bits/stdc++.h>
using namespace std;
const int N=2e5+;
long long a[N],b[N+];
int n,l=,k;
int main()
{ scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
{
cin>>a[i];
b[i]=a[i];
}
for(int i=;i<n;i++)
{
a[i+]+=a[i]/;
a[i]=a[i]%;
}
for(int i=;i<=n;i++)
{
if(a[i])
{
l=i;
break;
}
}
int answ=;
long long sum=;
for(int i=n;i>=;i--)
{
sum=sum*+a[i];
if(abs(sum)>1e10)break;
if(i<=l)
{
long long x=abs(sum-b[i]);
if(x==&&i==n)continue;
if(x<=k)answ++;
}
}
cout<<answ<<"\n";
return ;
}

codeforces 658D D. Bear and Polynomials(数学)的更多相关文章

  1. CodeForces 639C Bear and Polynomials

    Bear and Polynomials 题解: 如果改变一个其中的一个数,那么需要知道的是,前面的数都可以进到当前位来,如果过不来的话,那么就会因为前面有数导致无法变成0. 所以我们将前面的数不断向 ...

  2. VK Cup 2016 - Round 1 (Div. 2 Edition) D. Bear and Polynomials

    D. Bear and Polynomials 题目连接: http://www.codeforces.com/contest/658/problem/D Description Limak is a ...

  3. Codeforces 658D Bear and Polynomials【数学】

    题目链接: http://codeforces.com/contest/658/problem/D 题意: 给定合法多项式,改变一项的系数,使得P(2)=0,问有多少种方法? 分析: 暴力求和然后依次 ...

  4. Codeforces 902D/901B - GCD of Polynomials

    传送门:http://codeforces.com/contest/902/problem/D 本题是一个数学问题——多项式整除. 对于两个整数a.b,求最大公约数gcd(a,b)的辗转相除法的函数如 ...

  5. 【32.89%】【codeforces 574D】Bear and Blocks

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  6. Codeforces 735C:Tennis Championship(数学+贪心)

    http://codeforces.com/problemset/problem/735/C 题意:有n个人打锦标赛,淘汰赛制度,即一个人和另一个人打,输的一方出局.问这n个人里面冠军最多能赢多少场, ...

  7. codeforces 680C C. Bear and Prime 100(数论)

    题目链接: C. Bear and Prime 100 time limit per test 1 second memory limit per test 256 megabytes input s ...

  8. codeforces 680B B. Bear and Finding Criminals(水题)

    题目链接: B. Bear and Finding Criminals //#include <bits/stdc++.h> #include <vector> #includ ...

  9. codeforces 680A A. Bear and Five Cards(水题)

    题目链接: A. Bear and Five Cards //#include <bits/stdc++.h> #include <vector> #include <i ...

随机推荐

  1. 策略模式(headfirst设计模式学习笔记)

    鸭子的行为被封装 进入一组类中,能够轻易的扩展和改变.假设须要能够执行时改变行为! 策略模式定义了算法族.分别封装起来.让他们能够相互替换,此模式让算法的变化独立于使用算法的客户. 继承,相似之处用继 ...

  2. 多系统启动光盘制作---WIN7+WinXP+老毛桃PE工具箱

    1.工具: ⑴ Windows 7 ISO: ⑵ Windows XP ISO: ⑶ 老毛桃U盘启动盘制作工具V2013 制作得的ISO (含PE.DOS等): ⑷ UltraISO.EasyBoot ...

  3. 存储过程清理N天前数据

    CREATE OR REPLACE PROCEDURE APICALL_LOG_INTERFACE_CLEAN ( CLEANDAY IN Number --天数 ) AS v_cleanDay nu ...

  4. 《textanalytics》课程简单总结(2):topic mining

    coursera上的公开课<https://www.coursera.org/course/textanalytics>系列,讲的很不错哦. 1."term as topic&q ...

  5. Spark源码分析之二:Job的调度模型与运行反馈

    在<Spark源码分析之Job提交运行总流程概述>一文中,我们提到了,Job提交与运行的第一阶段Stage划分与提交,可以分为三个阶段: 1.Job的调度模型与运行反馈: 2.Stage划 ...

  6. php解码“&#”编码的中文用函数html_entity_decode()

    遇到类似 ' 这种编码的字,我们可以用html_entity_decode()函数来解码. html_entity_decode() 函数把 HTML 实体转换为字符. 语法 html_entity_ ...

  7. 怎样实现动态加入布局文件(避免 The specified child already has a parent的问题)

    首先扯点别的:我应经连续上了两个星期的班了,今天星期一.是第三个周.这个班上的也是没谁了.近期老是腰疼. 预计是累了.近期也没跑步.今天下班继续跑起. 这篇文章讲一讲怎样在一个布局文件里动态加在一个布 ...

  8. Yii的权限管理rbac

    1.首先我们要在配置文件的组件(component)里面配置一下 Rbac 在对应项目下的config/main.php或者config/main-local.php下添加 'authManager' ...

  9. Android 超高仿微信图片选择器 图片该这么载入

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/39943731,本文出自:[张鸿洋的博客] 1.概述 关于手机图片载入器,在当今像 ...

  10. hunnu--11548--找啊找啊找朋友

    找啊找啊找朋友 Time Limit: 1000ms, Special Time Limit:2500ms, Memory Limit:65536KB Total submit users: 14,  ...