Description

Golden ratio base (GRB) is a non-integer positional numeral system that uses the golden ratio (the irrational number (1+√5)/2 ≈ 1.61803399 symbolized by the Greek letter φ) as its base. It is sometimes referred to as base-φ, golden mean base, phi-base, or, phi-nary.       
Any non-negative real number can be represented as a base-φ numeral using only the digits 0 and 1, and avoiding the digit sequence "11" � this is called a standard form. A base-φ numeral that includes the digit sequence "11" can always be rewritten in standard form, using the algebraic properties of the base φ ― most notably that φ + 1 = φ 2 . For instance, 11(φ) = 100(φ). Despite using an irrational number base, when using standard form, all on-negative integers have a unique representation as a terminating (finite) base-φ expansion. The set of numbers which possess a finite base-φ representation is the ring Z[1 + √5/2]; it plays the same role in this numeral systems as dyadic rationals play in binary numbers, providing a possibility to multiply.       
Other numbers have standard representations in base-φ, with rational numbers having recurring representations. These representations are unique, except that numbers (mentioned above) with a terminating expansion also have a non-terminating expansion, as they do in base-10; for example, 1=0.99999….       
Coach MMM, an Computer Science Professor who is also addicted to Mathematics, is extremely interested in GRB and now ask you for help to write a converter which, given an integer N in base-10, outputs its corresponding form in base-φ.      
              

Input

There are multiple test cases. Each line of the input consists of one positive integer which is not larger than 10^9. The number of test cases is less than 10000. Input is terminated by end-of-file.      
              

Output

For each test case, output the required answer in a single line. Note that trailing 0s after the decimal point should be wiped. Please see the samples for more details.      
              

Sample Input

1
2
3
6
10
              

Sample Output

1
10.01
100.01
1010.0001
10100.0101

Hint

 
 
由于φ + 1 = φ 2,两边同乘φ k,得到φ k+1+φ k=φ k+2,说明只有有两位是1,就往前进一位。此外由φ + 1 = φ 2推到的2φ 2=φ 3+1,同理可知:φ k+3+φ k=2φ k+2,说明每一位的2都可以,由它前一位和它的后两位的1构成,这样就能将所有大于2的数降成1.再配合之前的,反复模拟便可得。由于当场没有估算这个数的长度,所以采用两个数组分别存了整数部分和小数部分。整体效率不是非常高,但是在短时间内做出来还是很高兴的。
 
 
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <string>
#define inf 0x3fffffff
#define esp 1e-10
#define N 100 using namespace std; int z[N], x[N], lenz, lenx; bool judge ()
{
if(z[0] && x[0])
return 0;
for (int i = 0; i < lenx; ++i)
if (x[i] > 1 || (x[i] && x[i+1]))
return 0; for (int i = 0; i < lenz; ++i)
if (z[i] > 1 ||(z[i] ==1 && z[i+1] == 1))
return 0; return 1;
} void doz (int i)
{
if (i == lenz-1)
lenz++;
int up = z[i] / 2;
z[i] = z[i] & 1;
z[i+1] += up;
if (i >= 2)
z[i-2] += up;
else
{
if (lenx < 3 - i)
lenx = 3 - i;
x[1-i] += up;
}
} void dox (int i)
{
if (i+3 > lenx)
lenx = i + 3;
int up = x[i] / 2;
x[i] = x[i] & 1;
x[i+2] += up;
if (i == 0)
z[0] += up;
else
x[i-1] += up;
} void qt (int n)
{
memset (z, 0, sizeof(z));
memset (x, 0, sizeof(x));
lenz = 1;
lenx = 0;
z[0] = n;
while (!judge ())
{
for (int i = lenx-1; i >= 0; --i)
{ if (i == 0 && x[i] > 0 && x[i+1] > 0)
{
int up = min (x[i], x[i+1]);
z[0] += up;
x[0] -= up;
x[1] -= up;
continue;
}
else if (x[i] > 0 && x[i+1] > 0)
{
int up = min (x[i], x[i+1]);
x[i-1] += up;
x[i+1] -= up;
x[i] -= up;
continue;
}
if (x[i] > 1)
{
dox (i);
continue;
} }
while(x[lenx-1] == 0)
lenx--;
for (int i = 0; i < lenz; ++i)
{ if (i == 0 && z[i] > 0 && x[0] > 0)
{
if (i == lenz-1)
lenz++;
int up = min (z[i], x[0]);
z[1] += up;
z[0] -= up;
x[0] -= up;
continue;
}
else if (z[i] > 0 && z[i+1] > 0)
{
if (i+3 > lenz)
lenz = i + 3;
int up = min (z[i], z[i+1]);
z[i+2] += up;
z[i+1] -= up;
z[i] -= up;
continue;
}
if (z[i] > 1)
{
doz(i);
continue;
}
}
}
while(x[lenx-1] == 0)
lenx--;
} int main()
{
//freopen ("test.txt", "r", stdin);
int n;
while (scanf ("%d", &n) != EOF)
{
qt (n);
for (int i = lenz - 1; i >= 0; --i)
printf ("%d", z[i]);
if (lenx > 0)
printf (".");
for (int i = 0; i < lenx; ++i)
printf ("%d", x[i]);
printf ("\n");
}
return 0;
}

ACM学习历程——HDU4814 Golden Radio Base(数学递推) (12年成都区域赛)的更多相关文章

  1. ACM学习历程—HDU 5459 Jesus Is Here(递推)(2015沈阳网赛1010题)

    Sample Input 9 5 6 7 8 113 1205 199312 199401 201314 Sample Output Case #1: 5 Case #2: 16 Case #3: 8 ...

  2. ACM学习历程—HDU1023 Train Problem II(递推 && 大数)

    Description As we all know the Train Problem I, the boss of the Ignatius Train Station want to know  ...

  3. ACM学习历程—ZOJ 3777 Problem Arrangement(递推 && 状压)

    Description The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem sett ...

  4. ACM学习历程—HDU 5326 Work(树形递推)

    Problem Description It’s an interesting experience to move from ICPC to work, end my college life an ...

  5. AndyQsmart ACM学习历程——ZOJ3872 Beauty of Array(递推)

    Description Edward has an array A with N integers. He defines the beauty of an array as the summatio ...

  6. ACM学习历程—HDU 5512 Pagodas(数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是给了初始的集合{a, b},然后取集合里 ...

  7. ACM学习历程—SNNUOJ1213 加油站问题(动态规划 || 数学)

    题目链接:http://219.244.176.199/JudgeOnline/problem.php?id=1213 这是这次微软实习面试的一道题,当时只相出了一个2n的做法,面试官让我优化成n的做 ...

  8. ACM学习历程—HDU 5073 Galaxy(数学)

    Description Good news for us: to release the financial pressure, the government started selling gala ...

  9. ACM学习历程—FZU2191完美的数字(数学)

    Description Bob是个很喜欢数字的孩子,现在他正在研究一个与数字相关的题目,我们知道一个数字的完美度是 把这个数字分解成三个整数相乘A*A*B(0<A<=B)的方法数,例如数字 ...

随机推荐

  1. Java 8 Collectors to Map

    1. 介绍 在本教程中,我们将讨论Collectors类的toMap()方法.我们使用它将流收集到一个Map实例中. 对于本教程中涉及的所有示例,我们将使用图书列表作为数据源,并将其转换为不同的Map ...

  2. Chrome自带恐龙小游戏的源码研究(五)

    在上一篇<Chrome自带恐龙小游戏的源码研究(四)>中实现了障碍物的绘制及移动,从这一篇开始主要研究恐龙的绘制及一系列键盘动作的实现. 会眨眼睛的恐龙 在游戏开始前的待机界面,如果仔细观 ...

  3. 输入两手牌,两手牌之间用“-”连接,每手牌的每张牌以空格分隔,“-”两边没有空格,如:4 4 4 4-joker JOKER 请比较两手牌大小,输出较大的牌,如果不存在比较关系则输出ERROR

    // ConsoleApplication10.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream& ...

  4. 源码维护基本命令diff_patch_quilt

    源码维护基本命令 一. diff--生成补丁 diff [命令行选项] 源文件 新文件 -r 递归处理相应目录 -N 包含新文件到patch -u 输出统一格式(unified format),这种格 ...

  5. linux下安装rabbitmq的rpm包问题记录

    安装rabbitmq的文章和帖子多如牛毛,不管是官网还是各个博客,这里附个Rabbitmq官网安装Rpm包的链接, http://www.rabbitmq.com/install-rpm.html 不 ...

  6. Spring属性编辑器详解

    1.常见的属性的注入:int,string,list,set,map 2.什么是属性编辑器及作用? (1)将spring配置文件中的字符串转换为相应的java对象 (2)spring内置了一些属性编辑 ...

  7. 数据结构---python---表

    一.list的基本实现技术 在数据结构中,如果用python实现线性表,无疑要提到list,list是一种元素个数可变的线性表(而tuple是不变的表,不支持改变其内部状态的任何操作,其他与list性 ...

  8. EasyPlayer播放海康大华RTSP流时RTSPClient客户端连接兼容问题的解决

    在之前的博客<EasyPlayer RTSP播放器对RTSP播放地址url的通用兼容修改意见>中,我描述了遇到的一个客户在播放大华某款摄像机时地址不兼容的问题,这不,团队刚刚参考我的这个意 ...

  9. 九度OJ 1078:二叉树遍历 (二叉树)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3748 解决:2263 题目描述: 二叉树的前序.中序.后序遍历的定义: 前序遍历:对任一子树,先访问跟,然后遍历其左子树,最后遍历其右子树 ...

  10. HNOI2016

    本蒟蒻表示终于$AC$了$HNOI2016$的六道毒瘤题... 高兴! 附上各个题的题解: $DAY1$: $T1$: BZOJ4537: [Hnoi2016]最小公倍数 $T2$: BZOJ4538 ...