Description

Golden ratio base (GRB) is a non-integer positional numeral system that uses the golden ratio (the irrational number (1+√5)/2 ≈ 1.61803399 symbolized by the Greek letter φ) as its base. It is sometimes referred to as base-φ, golden mean base, phi-base, or, phi-nary.       
Any non-negative real number can be represented as a base-φ numeral using only the digits 0 and 1, and avoiding the digit sequence "11" � this is called a standard form. A base-φ numeral that includes the digit sequence "11" can always be rewritten in standard form, using the algebraic properties of the base φ ― most notably that φ + 1 = φ 2 . For instance, 11(φ) = 100(φ). Despite using an irrational number base, when using standard form, all on-negative integers have a unique representation as a terminating (finite) base-φ expansion. The set of numbers which possess a finite base-φ representation is the ring Z[1 + √5/2]; it plays the same role in this numeral systems as dyadic rationals play in binary numbers, providing a possibility to multiply.       
Other numbers have standard representations in base-φ, with rational numbers having recurring representations. These representations are unique, except that numbers (mentioned above) with a terminating expansion also have a non-terminating expansion, as they do in base-10; for example, 1=0.99999….       
Coach MMM, an Computer Science Professor who is also addicted to Mathematics, is extremely interested in GRB and now ask you for help to write a converter which, given an integer N in base-10, outputs its corresponding form in base-φ.      
              

Input

There are multiple test cases. Each line of the input consists of one positive integer which is not larger than 10^9. The number of test cases is less than 10000. Input is terminated by end-of-file.      
              

Output

For each test case, output the required answer in a single line. Note that trailing 0s after the decimal point should be wiped. Please see the samples for more details.      
              

Sample Input

1
2
3
6
10
              

Sample Output

1
10.01
100.01
1010.0001
10100.0101

Hint

 
 
由于φ + 1 = φ 2,两边同乘φ k,得到φ k+1+φ k=φ k+2,说明只有有两位是1,就往前进一位。此外由φ + 1 = φ 2推到的2φ 2=φ 3+1,同理可知:φ k+3+φ k=2φ k+2,说明每一位的2都可以,由它前一位和它的后两位的1构成,这样就能将所有大于2的数降成1.再配合之前的,反复模拟便可得。由于当场没有估算这个数的长度,所以采用两个数组分别存了整数部分和小数部分。整体效率不是非常高,但是在短时间内做出来还是很高兴的。
 
 
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <string>
#define inf 0x3fffffff
#define esp 1e-10
#define N 100 using namespace std; int z[N], x[N], lenz, lenx; bool judge ()
{
if(z[0] && x[0])
return 0;
for (int i = 0; i < lenx; ++i)
if (x[i] > 1 || (x[i] && x[i+1]))
return 0; for (int i = 0; i < lenz; ++i)
if (z[i] > 1 ||(z[i] ==1 && z[i+1] == 1))
return 0; return 1;
} void doz (int i)
{
if (i == lenz-1)
lenz++;
int up = z[i] / 2;
z[i] = z[i] & 1;
z[i+1] += up;
if (i >= 2)
z[i-2] += up;
else
{
if (lenx < 3 - i)
lenx = 3 - i;
x[1-i] += up;
}
} void dox (int i)
{
if (i+3 > lenx)
lenx = i + 3;
int up = x[i] / 2;
x[i] = x[i] & 1;
x[i+2] += up;
if (i == 0)
z[0] += up;
else
x[i-1] += up;
} void qt (int n)
{
memset (z, 0, sizeof(z));
memset (x, 0, sizeof(x));
lenz = 1;
lenx = 0;
z[0] = n;
while (!judge ())
{
for (int i = lenx-1; i >= 0; --i)
{ if (i == 0 && x[i] > 0 && x[i+1] > 0)
{
int up = min (x[i], x[i+1]);
z[0] += up;
x[0] -= up;
x[1] -= up;
continue;
}
else if (x[i] > 0 && x[i+1] > 0)
{
int up = min (x[i], x[i+1]);
x[i-1] += up;
x[i+1] -= up;
x[i] -= up;
continue;
}
if (x[i] > 1)
{
dox (i);
continue;
} }
while(x[lenx-1] == 0)
lenx--;
for (int i = 0; i < lenz; ++i)
{ if (i == 0 && z[i] > 0 && x[0] > 0)
{
if (i == lenz-1)
lenz++;
int up = min (z[i], x[0]);
z[1] += up;
z[0] -= up;
x[0] -= up;
continue;
}
else if (z[i] > 0 && z[i+1] > 0)
{
if (i+3 > lenz)
lenz = i + 3;
int up = min (z[i], z[i+1]);
z[i+2] += up;
z[i+1] -= up;
z[i] -= up;
continue;
}
if (z[i] > 1)
{
doz(i);
continue;
}
}
}
while(x[lenx-1] == 0)
lenx--;
} int main()
{
//freopen ("test.txt", "r", stdin);
int n;
while (scanf ("%d", &n) != EOF)
{
qt (n);
for (int i = lenz - 1; i >= 0; --i)
printf ("%d", z[i]);
if (lenx > 0)
printf (".");
for (int i = 0; i < lenx; ++i)
printf ("%d", x[i]);
printf ("\n");
}
return 0;
}

ACM学习历程——HDU4814 Golden Radio Base(数学递推) (12年成都区域赛)的更多相关文章

  1. ACM学习历程—HDU 5459 Jesus Is Here(递推)(2015沈阳网赛1010题)

    Sample Input 9 5 6 7 8 113 1205 199312 199401 201314 Sample Output Case #1: 5 Case #2: 16 Case #3: 8 ...

  2. ACM学习历程—HDU1023 Train Problem II(递推 && 大数)

    Description As we all know the Train Problem I, the boss of the Ignatius Train Station want to know  ...

  3. ACM学习历程—ZOJ 3777 Problem Arrangement(递推 && 状压)

    Description The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem sett ...

  4. ACM学习历程—HDU 5326 Work(树形递推)

    Problem Description It’s an interesting experience to move from ICPC to work, end my college life an ...

  5. AndyQsmart ACM学习历程——ZOJ3872 Beauty of Array(递推)

    Description Edward has an array A with N integers. He defines the beauty of an array as the summatio ...

  6. ACM学习历程—HDU 5512 Pagodas(数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是给了初始的集合{a, b},然后取集合里 ...

  7. ACM学习历程—SNNUOJ1213 加油站问题(动态规划 || 数学)

    题目链接:http://219.244.176.199/JudgeOnline/problem.php?id=1213 这是这次微软实习面试的一道题,当时只相出了一个2n的做法,面试官让我优化成n的做 ...

  8. ACM学习历程—HDU 5073 Galaxy(数学)

    Description Good news for us: to release the financial pressure, the government started selling gala ...

  9. ACM学习历程—FZU2191完美的数字(数学)

    Description Bob是个很喜欢数字的孩子,现在他正在研究一个与数字相关的题目,我们知道一个数字的完美度是 把这个数字分解成三个整数相乘A*A*B(0<A<=B)的方法数,例如数字 ...

随机推荐

  1. java Map 实现类的对比

    java为数据结构中的映射定义了一个接口 java.util.Map ,他有四个实现类

  2. Java 8 Collectors to Map

    1. 介绍 在本教程中,我们将讨论Collectors类的toMap()方法.我们使用它将流收集到一个Map实例中. 对于本教程中涉及的所有示例,我们将使用图书列表作为数据源,并将其转换为不同的Map ...

  3. c#线程顺序执行

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  4. html中文件类型的accept属性有哪些

    *.3gpp audio/3gpp, video/3gpp 3GPP Audio/Video *.ac3 audio/ac3 AC3 Audio *.asf allpication/vnd.ms-as ...

  5. 流式 storm介绍

    Storm是什么 如果只用一句话来描述storm的话,可能会是这样:分布式实时计算系统.按照storm作者的说法,storm对于实时计算的意义类似于hadoop对于批处理的意义.我们都知道,根据goo ...

  6. beego的MVC架构介绍

    beego 的 MVC 架构介绍 beego 是一个典型的 MVC 框架,它的整个执行逻辑如下图所示: 通过文字来描述如下: 在监听的端口接收数据,默认监听在 8080 端口. 用户请求到达 8080 ...

  7. 14-redis运维常用命令

    一:运维常用的server端命令    TIME 查看时间戳与微秒数 DBSIZE 查看当前库中的key数量 BGREWRITEAOF 后台进程重写AOF BGSAVE       后台保存rdb快照 ...

  8. 【剑指Offer学习】【面试题58:二叉树的下一个结点】

    题目:给定一棵二叉树和当中的一个结点.怎样找出中序遍历顺序的下一个结点?树中的结点除了有两个分别指向左右子结点的指针以外,另一个指向父节点的指针. 解题思路 假设一个结点有右子树.那么它的下一个结点就 ...

  9. Linux的经常使用命令(1) - 指定执行级别

    命令:init [0123456] 执行级别 0:关机 1:单用户 2:多用户状态没有网络服务 3:多用户状态有网络服务 4:系统未使用保留给用户 5:图形界面 6:系统重新启动 经常使用执行级别是3 ...

  10. python的安装及matplotlib安装

    本文通过实践,自行安装了一遍python及matplotlib. 1.用python2.7的最新版本(写本文时,用的2.7.13).因为默认有安装pip,记得安装时选择最后一个添加环境变量,不然还要手 ...