LibreOJ2042 - 「CQOI2016」不同的最小割
Description
给出一个给出一个\(n(n\leq850)\)个点\(m(m\leq8500)\)条边的无向图。定义\(cut(s,t)\)等于\(s,t\)的最小割的容量,求在所有\(cut(s,t)\)中不同的值有多少个。
Solution
有一个我也想不好为什么的性质:若\(s,t\)的最小割将原图划分成\(S,T\)两个集合,那么\(\forall u\in S,v\in T\),有\(cut(u,v)=cut(s,t)\)。那么我们可以用分治来做。
对于一个点集\(V\),随便选择两个不同的点\(s,t\)并求出最小割和集合\(S,T\)。接下来只要分别考虑\(S\)内部的最小割和\(T\)内部的最小割即可。
我们可以用一个数组\(seq\)上的一个区间\([L,R]\)来代表集合。每次求出\(S,T\)后将\(seq[L..R]\)按\(S\)在前\(T\)在后的顺序重排,这样\(S\)和\(T\)也可以用序列上的区间表示了。
Code
//「CQOI2016」不同的最小割
#include <bits/stdc++.h>
using namespace std;
inline char gc()
{
static char now[1<<16],*s,*t;
if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
return *s++;
}
inline int read()
{
int x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
const int N=1e3;
const int INF=0x3F3F3F3F;
int n,m;
int edCnt,h[N];
struct edge{int v,c,nxt;} ed[20*N];
int s,t;
void edAdd(int u,int v,int c)
{
edCnt++; ed[edCnt].v=v,ed[edCnt].c=c,ed[edCnt].nxt=h[u],h[u]=edCnt;
edCnt++; ed[edCnt].v=u,ed[edCnt].c=c,ed[edCnt].nxt=h[v],h[v]=edCnt;
}
int dpt[N]; int op,cl,Q[N];
bool bfs()
{
memset(dpt,0,sizeof dpt);
op=cl=0; dpt[s]=1,Q[++cl]=s;
while(op<cl)
{
int u=Q[++op]; if(u==t) break;
for(int i=h[u];i;i=ed[i].nxt)
{
int v=ed[i].v;
if(!dpt[v]&&ed[i].c) dpt[v]=dpt[u]+1,Q[++cl]=v;
}
}
return dpt[t];
}
int fill(int u,int in)
{
if(u==t||in==0) return in;
int out=0;
for(int i=h[u];i;i=ed[i].nxt)
{
int v=ed[i].v,c=ed[i].c;
if(!c||dpt[v]!=dpt[u]+1) continue;
int fl=fill(v,min(in-out,c));
if(fl==0) dpt[v]=0;
else ed[i].c-=fl,ed[i^1].c+=fl,out+=fl;
if(in==out) break;
}
return out;
}
int Dinic()
{
for(int i=2;i<=edCnt;i+=2) ed[i].c=ed[i^1].c=(ed[i].c+ed[i^1].c)>>1;
int r=0;
while(bfs()) r+=fill(s,INF);
return r;
}
int cnt,seq[N],tmp[N];
int ansCnt,ans[N];
void solve(int L,int R)
{
if(L==R) return;
s=seq[L+R>>1],t=seq[R]; ans[++ansCnt]=Dinic();
int op=L-1,cl=R+1;
for(int i=L;i<=R;i++) tmp[dpt[seq[i]]?++op:--cl]=seq[i];
for(int i=L;i<=R;i++) seq[i]=tmp[i];
solve(L,op),solve(cl,R);
}
int main()
{
n=read(),m=read();
edCnt=1;
for(int i=1;i<=m;i++)
{
int u=read(),v=read(),w=read();
edAdd(u,v,w);
}
for(int i=1;i<=n;i++) seq[i]=i;
solve(1,n);
sort(ans+1,ans+ansCnt+1);
printf("%d\n",unique(ans+1,ans+ansCnt+1)-ans-1);
return 0;
}
LibreOJ2042 - 「CQOI2016」不同的最小割的更多相关文章
- LoibreOJ 2042. 「CQOI2016」不同的最小割 最小割树 Gomory-Hu tree
2042. 「CQOI2016」不同的最小割 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- 「CQOI2016」不同的最小割
「CQOI2016」不同的最小割 传送门 建出最小割树,把每一个点对的最小割抠出来 \(\text{unique}\) 一下就好了. 参考代码: #include <algorithm> ...
- loj2042 「CQOI2016」不同的最小割
分治+最小割 看到题解的第一句话是这个就秒懂了,然后乱七八糟的错误.越界.RE-- #include <algorithm> #include <iostream> #incl ...
- 「BZOJ2127」happiness(最小割)
题目描述 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文 ...
- Codechef RIN 「Codechef14DEC」Course Selection 最小割离散变量模型
问题描述 提供中文版本好评,一直以为 Rin 是题目名字... pdf submit 题解 参考了 东营市胜利第一中学姜志豪 的<网络流的一些建模方法>(2016年信息学奥林匹克中国国家队 ...
- BZOJ2007/LG2046 「NOI2010」海拔 平面图最小割转对偶图最短路
问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海 ...
- LOJ_6045_「雅礼集训 2017 Day8」价 _最小割
LOJ_6045_「雅礼集训 2017 Day8」价 _最小割 描述: 有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益. 假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含 ...
- loj #2044. 「CQOI2016」手机号码
#2044. 「CQOI2016」手机号码 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- LibreOJ2044 - 「CQOI2016」手机号码
Portal Description 给出两个十一位数\(L,R\),求\([L,R]\)内所有满足以下两个条件的数的个数. 出现至少\(3\)个相邻的相同数字: 不能同时出现\(4\)和\(8\). ...
随机推荐
- codeforce Gym 100685F Flood (topo排序)
如果直接模拟水向周围流会TLE,因为某些个结点被重复扩展了多次, 科学做法是topo排序,每次只把入度为0的点放入队列,这样就严格保证了每个结点只被扩展一次. #include<bits/std ...
- Ubuntu18.04如何从英文界面更改为中文界面
本文介绍如何将Ubuntu18.04安装后的英文界面,更改为中文界面,即系统语言由英文改为简体中文.注意,与安装中文输入法不同,两者也没有冲突. 首先进入设置(Setting),选择区域和语言(Reg ...
- css设置禁止文字被选中
// 禁止文字被鼠标选中 moz-user-select: -moz-none; -moz-user-select: none; -o-user-select:none; -khtml-user-se ...
- python_105_类的特殊成员方法
aa.py class C(): def __init__(self): self.name='QiZhiguang' 类的特殊成员方法: # 1. __doc__ 表示类的描述信息 class Do ...
- Django 模板函数
Django 模板函数 在模板中的函数是只需要函数名,不用加括号,自动执行 在前端中的函数 不用加括号,函数自动执行 前端 {% for item in userinfo.keys %} <h3 ...
- javaweb基础(20)_JavaBean总结
一.什么是JavaBean JavaBean是一个遵循特定写法的Java类,它通常具有如下特点: 这个Java类必须具有一个无参的构造函数 属性必须私有化. 私有化的属性必须通过public类型的方法 ...
- UVa 12171 题解
英文题面不怎么友好,大家还是自行通过紫书了解题面吧... 解题思路: 1. 面对500 ^ 3的数据范围,我们需要先用离散化解决掉爆空间的问题. 2. 由于我们要求的总体积包括内空部分的体积,我们可以 ...
- Windows 10+Ubuntu双系统修复Ubuntu启动引导
U盘启动,联网 $ sudo su sudo add-apt add-apt-repository ppa:yannubuntu/boot-repair apt-get update apt-get ...
- CentOS7 安装操作命令
#timedatectl set-timezone Asia/Shanghai 关闭SELinux vi /etc/sysconfig/selinux #SELINUX=enforcing SELIN ...
- PHP获取文件夹内所有文件包括子目录文件的名称或路径
/* * new getFile($_dir[,$_emptyDir,$_fileType]); * @parma $_dir 是目录名称 * @parma $_emptyDir 是否获取空文件夹,选 ...