LibreOJ2042 - 「CQOI2016」不同的最小割
Description
给出一个给出一个\(n(n\leq850)\)个点\(m(m\leq8500)\)条边的无向图。定义\(cut(s,t)\)等于\(s,t\)的最小割的容量,求在所有\(cut(s,t)\)中不同的值有多少个。
Solution
有一个我也想不好为什么的性质:若\(s,t\)的最小割将原图划分成\(S,T\)两个集合,那么\(\forall u\in S,v\in T\),有\(cut(u,v)=cut(s,t)\)。那么我们可以用分治来做。
对于一个点集\(V\),随便选择两个不同的点\(s,t\)并求出最小割和集合\(S,T\)。接下来只要分别考虑\(S\)内部的最小割和\(T\)内部的最小割即可。
我们可以用一个数组\(seq\)上的一个区间\([L,R]\)来代表集合。每次求出\(S,T\)后将\(seq[L..R]\)按\(S\)在前\(T\)在后的顺序重排,这样\(S\)和\(T\)也可以用序列上的区间表示了。
Code
//「CQOI2016」不同的最小割
#include <bits/stdc++.h>
using namespace std;
inline char gc()
{
static char now[1<<16],*s,*t;
if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
return *s++;
}
inline int read()
{
int x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
const int N=1e3;
const int INF=0x3F3F3F3F;
int n,m;
int edCnt,h[N];
struct edge{int v,c,nxt;} ed[20*N];
int s,t;
void edAdd(int u,int v,int c)
{
edCnt++; ed[edCnt].v=v,ed[edCnt].c=c,ed[edCnt].nxt=h[u],h[u]=edCnt;
edCnt++; ed[edCnt].v=u,ed[edCnt].c=c,ed[edCnt].nxt=h[v],h[v]=edCnt;
}
int dpt[N]; int op,cl,Q[N];
bool bfs()
{
memset(dpt,0,sizeof dpt);
op=cl=0; dpt[s]=1,Q[++cl]=s;
while(op<cl)
{
int u=Q[++op]; if(u==t) break;
for(int i=h[u];i;i=ed[i].nxt)
{
int v=ed[i].v;
if(!dpt[v]&&ed[i].c) dpt[v]=dpt[u]+1,Q[++cl]=v;
}
}
return dpt[t];
}
int fill(int u,int in)
{
if(u==t||in==0) return in;
int out=0;
for(int i=h[u];i;i=ed[i].nxt)
{
int v=ed[i].v,c=ed[i].c;
if(!c||dpt[v]!=dpt[u]+1) continue;
int fl=fill(v,min(in-out,c));
if(fl==0) dpt[v]=0;
else ed[i].c-=fl,ed[i^1].c+=fl,out+=fl;
if(in==out) break;
}
return out;
}
int Dinic()
{
for(int i=2;i<=edCnt;i+=2) ed[i].c=ed[i^1].c=(ed[i].c+ed[i^1].c)>>1;
int r=0;
while(bfs()) r+=fill(s,INF);
return r;
}
int cnt,seq[N],tmp[N];
int ansCnt,ans[N];
void solve(int L,int R)
{
if(L==R) return;
s=seq[L+R>>1],t=seq[R]; ans[++ansCnt]=Dinic();
int op=L-1,cl=R+1;
for(int i=L;i<=R;i++) tmp[dpt[seq[i]]?++op:--cl]=seq[i];
for(int i=L;i<=R;i++) seq[i]=tmp[i];
solve(L,op),solve(cl,R);
}
int main()
{
n=read(),m=read();
edCnt=1;
for(int i=1;i<=m;i++)
{
int u=read(),v=read(),w=read();
edAdd(u,v,w);
}
for(int i=1;i<=n;i++) seq[i]=i;
solve(1,n);
sort(ans+1,ans+ansCnt+1);
printf("%d\n",unique(ans+1,ans+ansCnt+1)-ans-1);
return 0;
}
LibreOJ2042 - 「CQOI2016」不同的最小割的更多相关文章
- LoibreOJ 2042. 「CQOI2016」不同的最小割 最小割树 Gomory-Hu tree
2042. 「CQOI2016」不同的最小割 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- 「CQOI2016」不同的最小割
「CQOI2016」不同的最小割 传送门 建出最小割树,把每一个点对的最小割抠出来 \(\text{unique}\) 一下就好了. 参考代码: #include <algorithm> ...
- loj2042 「CQOI2016」不同的最小割
分治+最小割 看到题解的第一句话是这个就秒懂了,然后乱七八糟的错误.越界.RE-- #include <algorithm> #include <iostream> #incl ...
- 「BZOJ2127」happiness(最小割)
题目描述 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文 ...
- Codechef RIN 「Codechef14DEC」Course Selection 最小割离散变量模型
问题描述 提供中文版本好评,一直以为 Rin 是题目名字... pdf submit 题解 参考了 东营市胜利第一中学姜志豪 的<网络流的一些建模方法>(2016年信息学奥林匹克中国国家队 ...
- BZOJ2007/LG2046 「NOI2010」海拔 平面图最小割转对偶图最短路
问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海 ...
- LOJ_6045_「雅礼集训 2017 Day8」价 _最小割
LOJ_6045_「雅礼集训 2017 Day8」价 _最小割 描述: 有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益. 假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含 ...
- loj #2044. 「CQOI2016」手机号码
#2044. 「CQOI2016」手机号码 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- LibreOJ2044 - 「CQOI2016」手机号码
Portal Description 给出两个十一位数\(L,R\),求\([L,R]\)内所有满足以下两个条件的数的个数. 出现至少\(3\)个相邻的相同数字: 不能同时出现\(4\)和\(8\). ...
随机推荐
- HTML之基本语法(段落标签、标题标签、空格标签、换行标签、图片标签和图片的基本属性)
一.HTML标签 所谓的HTML的标签就是发明者认为定义好的一些单词,就相当于我们汉语中的字 二.HTML的语法 语法就是用来定义这些“字”应该如何解析或者书写的规则 三.常见标签及基本语法 1.人为 ...
- JavaScript实现页面到滚动到指定位置执行某些操作
比如 页面中 某个DOM, 希望点击按钮后页面直接跳转到 这个DOM所在的位置, 1. 获取DOM离屏幕的高度 var hTop = $('#box').offset().top; $('body,h ...
- pycharm 使用技巧
格式化代码为pep8: ctrl+alt+l http://edu.51cto.com//index.php?do=lession&id=163794
- DROP LANGUAGE - 删除一个过程语言
SYNOPSIS DROP [ PROCEDURAL ] LANGUAGE name [ CASCADE | RESTRICT ] DESCRIPTION 描述 DROP LANGUAGE 将删除曾注 ...
- java基础—java对象的序列化和反序列化
一.序列化和反序列化的概念 把对象转换为字节序列的过程称为对象的序列化. 把字节序列恢复为对象的过程称为对象的反序列化. 对象的序列化主要有两种用途: 1) 把对象的字节序列永久地保存到硬盘上,通常存 ...
- js函数式编程(一)-纯函数
我将写的第一个主题是js的函数式编程,这一系列都是mostly adequate guide这本书的读书总结.原书在gitbook上,有中文版.由于原作者性格活泼,书中夹杂很多俚语,并且行文洒脱.中文 ...
- 【原】基于matlab的蓝色车牌定位与识别---绪论
本着对车牌比较感兴趣,自己在课余时间摸索关于车牌的定位与识别,现将自己所做的一些内容整理下,也方便和大家交流. 考虑到车牌的定位涉及到许多外界的因素,因此有必要对车牌照的获取条件进行一些限定: 一.大 ...
- 【java】类成员的访问限制关系
- 19.Yii2.0框架模型删除记录
目录 //删除记录 //http://yii.com/?r=home/del public function actionDel() { //查出要删除的记录行 // 方法一:(查一行,删一行) // ...
- HashMap存储原理
1. HashMap概述 HashMap是基于哈希表的Map接口的非同步实现.此实现提供所有可选的映射操作,并允许使用null值和null键.此类不保证映射的顺序,特别是它不保证该顺序恒久不变. ...