题目描述

有n个圆盘从天而降,后面落下的可以盖住前面的。求最后形成的封闭区域的周长。看下面这副图, 所有的红色线条的总长度即为所求.

输入

第一行为1个整数n,N<=1000
接下来n行每行3个实数,ri,xi,yi,表示下落时第i个圆盘的半径和圆心坐标.

输出

最后的周长,保留三位小数

样例输入

2
1 0 0
1 1 0

样例输出

10.472


题解

计算几何

考虑从下到上的每一个圆,它被其它的圆覆盖了多少。即考虑它被覆盖了多少弧度。

考虑两个圆,如果相离则不覆盖,内含判断一下包含关系。

如果它们相交,则两个半径和圆心连线形成了一个三角形,使用余弦定理$a^2+b^2-c^2=2ab\cos C$可以求出交点与圆心连线的夹角,再用$atan2$求出极角,极角加减夹角即为覆盖弧度。

得到所有覆盖弧度范围后排序,求区间覆盖即可。

注意一下覆盖弧度范围跨越0和2π的处理。

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 1010
#define squ(x) ((x) * (x))
using namespace std;
const double pi = acos(-1);
struct data
{
double pl , pr;
bool operator<(const data &a)const {return pl < a.pl;}
}a[N << 1];
double x[N] , y[N] , r[N];
int tot;
int main()
{
int n , i , j;
double afa , beta , d , last , ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%lf%lf%lf" , &r[i] , &x[i] , &y[i]);
for(i = 1 ; i <= n ; i ++ )
{
ans += 2 * pi * r[i];
tot = 0;
for(j = i + 1 ; j <= n ; j ++ )
{
tot ++ , d = squ(x[i] - x[j]) + squ(y[i] - y[j]);
if(squ(r[i] + r[j]) <= d) a[tot].pl = a[tot].pr = 0;
else if(squ(r[i] - r[j]) >= d)
{
if(r[i] > r[j]) a[tot].pl = a[tot].pr = 0;
else a[tot].pl = 0 , a[tot].pr = 2 * pi;
}
else
{
afa = acos((r[i] * r[i] + d - r[j] * r[j]) / (2 * r[i] * sqrt(d)));
beta = atan2(y[j] - y[i] , x[j] - x[i]);
if(beta < 0) beta += 2 * pi;
a[tot].pl = beta - afa , a[tot].pr = beta + afa;
if(a[tot].pl < 0) tot ++ , a[tot].pl = a[tot - 1].pl + 2 * pi , a[tot - 1].pl = 0 , a[tot].pr = 2 * pi;
else if(a[tot].pr > 2 * pi) tot ++ , a[tot].pr = a[tot - 1].pr - 2 * pi , a[tot - 1].pr = 2 * pi , a[tot].pl = 0;
}
}
sort(a + 1 , a + tot + 1);
last = -1;
for(j = 1 ; j <= tot ; j ++ )
{
if(a[j].pr <= last) continue;
if(a[j].pl > last) ans -= (a[j].pr - a[j].pl) * r[i];
else ans -= (a[j].pr - last) * r[i];
last = a[j].pr;
}
}
printf("%.3lf\n" , ans);
return 0;
}

【bzoj1043】[HAOI2008]下落的圆盘 计算几何的更多相关文章

  1. bzoj1043[HAOI2008]下落的圆盘 计算几何

    1043: [HAOI2008]下落的圆盘 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1598  Solved: 676[Submit][Stat ...

  2. 【BZOJ1043】下落的圆盘 [计算几何]

    下落的圆盘 Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 有n个圆盘从天而降,后面落下的可 ...

  3. 【计算几何】bzoj1043 [HAOI2008]下落的圆盘

    n^2枚举圆盘,用两圆圆心的向量的极角+余弦定理求某个圆覆盖了该圆的哪一段区间(用弧度表示),最后求个区间并. 注意--精度--最好再累计区间的时候,把每个区间的长度减去EPS,防止最后覆盖的总区间超 ...

  4. bzoj1043 [HAOI2008]下落的圆盘

    Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. Input 第一行为1个整数n,N<=1000 ...

  5. BZOJ 1043 HAOI2008 下落的圆盘 计算几何

    题目大意:n个圆盘依次下落.求终于能看到的轮廓线面积 円盘反对! 让我们一起团结起来! 赶走円盘! 咳咳.非常神的一道题 今天去看了题解和白书才搞出来-- 首先我们倒着做 对于每一个圆盘处理出在它之后 ...

  6. BZOJ 1043 [HAOI2008]下落的圆盘 ——计算几何

    倒着考虑,加入一个圆,判断和前面有没有完全覆盖的情况. 如果没有,和圆盘一一取交集,然后计算它们的并集,然后计算即可. #include <map> #include <cmath& ...

  7. JZYZOJ1502 [haoi2008]下落的圆盘 计算几何 贪心

    http://172.20.6.3/Problem_Show.asp?id=1502这种题用了快一天才写出来也是真的辣鸡.主要思路就是计算一下被挡住的弧度然后对弧度进行贪心.最开始比较困扰的是求弧度值 ...

  8. BZOJ-1043 [HAOI2008]下落的圆盘

    几何题... 先把所有圆储存起来,然后对于每个圆我们求得之后放下的圆挡住了的部分,求个并集,并把没被挡到的周长加进答案. #include <cstdlib> #include <c ...

  9. 【BZOJ1043】[HAOI2008]下落的圆盘 几何

    [BZOJ1043][HAOI2008]下落的圆盘 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求.  ...

随机推荐

  1. Windows 7, Visual Studio 2015下编译Webkit

    因工作需要,需要编译Windows版本的Webkit,中间走了不少弯路,都记录下来,供大家参考!也随时欢迎大家讨论(QQ群:345802342) 整个编译工作参考的是官方文档:https://webk ...

  2. 《毛毛虫组》【Alpha】Scrum meeting 4

    第二天 日期:2019/6/17 1.1 今日完成任务情况以及遇到的问题. 今日完成任务情况: 货物入库管理模块设计: (1)对数据库表--tb_OutStore进行修改并完善: (2)学习trig_ ...

  3. Forbidden You don't have permission to access /phpStudyTest/application/index/controller/Index.php on this server.

    发生情况:将thinkPHP从官网上下了  http://thinkphp.cn 然后安装了phpstudy和PHPstorm,并将thinkPHP解压到www路径下 在用PHPstorm打开 thi ...

  4. 廖老师JavaScript教程高阶函数-sort用法

    先来学习一个新词:高阶函数 高阶函数英文叫Higher-order function.那么什么是高阶函数? JavaScript的函数其实都指向某个变量.既然变量可以指向函数,函数的参数能接收变量,那 ...

  5. 机器学习十大常用算法(CITE 不会停的蜗牛 ) interesting

    算法如下: 决策树 随机森林算法 逻辑回归 SVM 朴素贝叶斯 K最近邻算法 K均值算法 Adaboost 算法 神经网络 马尔可夫 1. 决策树 根据一些 feature 进行分类,每个节点提一个问 ...

  6. (转发)InputAccessoryView的使用方法

    转自:http://blog.sina.com.cn/s/blog_45e2b66c01015we9.html UITextFields and UITextViews have an inputAc ...

  7. 编译安装 nginx php swoole

    安装之前先 准备环境 yum install gcc gcc-c++ automake pcre pcre-devel zlip zlib-devel openssl openssl-devel 然后 ...

  8. 【Mysql】Mysql主从库搭建过程(爬完坑后整理所得)

    Mysql主从数据库搭建流程 新手开始学习mysql主从库,遇到一些问题,总结后写出以下流程 下面以5.7.23版本为例介绍 第一步:去官网下载5.7.23版本的免安装压缩包形式的mysql文件,贴上 ...

  9. Linux下同进程多进程号实时监控

    一.需求: Linux上对一个进程名称可能会对应的多个进程号的进程进行监控,如果有多个则输出到一个日志文件. 以上问题针对的是一个定时程序还未运行结束,到下一个时刻程序又运行起来了,避免造成重复调用接 ...

  10. Helm入门

    前言:Helm是GO语言编写的,是管理kubernetes集群中应用程序包的客户端工具.Helm是类似于centos上的yum工具或Ubuntu上的apt-get工具.对于应用发布者而言,可以通过He ...