BZOJ_2134_单选错位——期望DP

题意:

分析:
设A为Ai ∈ [1,ai+1] 的概率,B为Ai = A(imodn+1)的概率
显然P(A|B) = 1,那么根据贝叶斯定理P(B) = P(B|A)*P(A)
P(A) = min(ai,ai+1)/ai
P(B|A) = 1/a(i+1)
P(B) = min(ai,ai+1)/(ai*a(i+1))
又因为期望的可加性,直接加起来统计答案

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
using namespace std;
#define LL long long
#define du double
du ans;
int n,A,B,C,a[10000001];
int main(){
scanf("%d%d%d%d%d",&n,&A,&B,&C,a+1);
for (int i=2;i<=n;i++) a[i] = ((long long)a[i-1] * A + B) % 100000001;
for (int i=1;i<n;i++) a[i] = a[i] % C +1,ans+=1.0/max(a[i],a[i+1]%C+1);
a[n]=a[n]%C+1;ans+=1.0/max(a[1],a[n]); //for(int i=1;i<=n;i++)printf("%d\n",a[i]);
printf("%.3lf",ans);
}

BZOJ_2134_单选错位——期望DP的更多相关文章

  1. 【BZOJ】2134: 单选错位 期望DP

    [题意]有n道题,第i道题有ai个选项.把第i道题的正确答案填到第i+1道题上(n填到1),问期望做对几道题.n<=10^7. [算法]期望DP [题解]正确答案的随机分布不受某道题填到后面是否 ...

  2. BZOJ 2134 单选错位 ——期望DP

    发现概率是∑1/两道题答案相同的概率, 稍加化简 #include <map> #include <ctime> #include <cmath> #include ...

  3. BZOJ 2134: 单选错位( 期望 )

    第i个填到第i+1个的期望得分显然是1/max(a[i],a[i+1]).根据期望的线性性, 我们只需将每个选项的期望值累加即可. ---------------------------------- ...

  4. Bzoj 2134: [国家集训队2011]单选错位(期望)

    2134: 单选错位 Time Limit: 10 Sec Memory Limit: 259 MB Description Input n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A ...

  5. 【BZOJ2134】单选错位 概率DP

    一句话:有一些看似有关系的期望在把事件全面发生之后就变得相互独立了 #include<cstdio> using namespace std; ]; double ans; int mai ...

  6. 【bzoj2134】单选错位 期望

    题目描述 输入 n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A, B, C, a1,由上交的程序产生数列a.下面给出pascal/C/C++的读入语句和产生序列的语句(默认从标准输入读 ...

  7. 洛谷P1297 单选错位——期望

    题目:https://www.luogu.org/problemnew/show/P1297 读懂题后就变得很简单啦: 对于一个问题和它的下一个问题,我们考虑: 设上一个问题有 a 个选项,下一个问题 ...

  8. BZOJ2134: 单选错位(期望乱搞)

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1101  Solved: 851[Submit][Status][Discuss] Descripti ...

  9. P1297 [国家集训队]单选错位(期望)

    P1297 [国家集训队]单选错位 期望入门 我们考虑涂到第$i$道题时的情况 此时题$i$答案有$a[i]$种,我们可能涂$a[i+1]$种 分类讨论: 1.$a[i]>=a[i+1]$: 可 ...

随机推荐

  1. nifi1.6.0汉化

    1.1 测试机 l  Apache NiFi 1.6.0 l  HDP 2.6.3 l  集群规模:单节点 l  操作系统:CentOs7 l  以下所有操作均在root用户下执行 1.2 安装环境 ...

  2. java——封装和关键字

    封装:将类的属性和方法的实现细节隐藏起来的过程 封装的好处:1重用性(代码)2,利于分工3,隐藏细节 访问关键字:public private 默认访问修饰符,protected static关键字 ...

  3. IT实用技术资源整理

    花了一下午整理出了常用的且比较实用的网站,以及一些收藏的资源,希望对大家有帮助! 常用技术资料 Python中文开发者社区 Python中文官方文档 开源中国社区 Python机器学习 jmeter插 ...

  4. 前端技术之_CSS详解第五天

    前端技术之_CSS详解第五天 一.行高和字号 1.1 行高 CSS中,所有的行,都有行高.盒模型的padding,绝对不是直接作用在文字上的,而是作用在“行”上的. <!DOCTYPE html ...

  5. JAVAEE——BOS物流项目13:Quartz入门案例、核心概念、cron 表达式的格式(了解)

    1.quartz入门案例 本入门案例基于spring和quartz整合完成. 第一步:创建maven工程,导入spring和quartz相关依赖 第二步:创建任务类 第三步:在spring配置文件中配 ...

  6. 分布式逻辑管理平台XXL-GLUE

    <分布式逻辑管理平台XXL-GLUE>    一.简介 1.1 概述 XXL-GLUE 是一个分布式环境下的 "可执行逻辑单元" 管理平台, 学习简单,扩展JVM的动态 ...

  7. javascript 易漏点

    javascript 是一种解释型语言,不是java或c++那样的编译语言.javascript指令以普通文本形式传递给浏览器,然后依次解释执行.它们不必首先“编译”成只有计算机处理器能理解的机器码. ...

  8. javascript中字符串和字符串变量的问题

    var s = new String("hello"); s.indexOf(1) = 'p'; //错误,indexof()是函数 s[1]='p' //错误,在c和c++可以改 ...

  9. csrf攻击与防范

    CSRF(Cross Site Request Forgeries)跨网站请求伪造,也叫XSRF,通过伪装来自受信任用户的请求来攻击利用受信任网站. 与对比 xss:本网站运行了来自其它网站的脚本 c ...

  10. mysql数据库死锁的产生原因及解决办法

    这篇文章主要介绍了mysql数据库锁的产生原因及解决办法,需要的朋友可以参考下   数据库和操作系统一样,是一个多用户使用的共享资源.当多个用户并发地存取数据 时,在数据库中就会产生多个事务同时存取同 ...