BZOJ_3685_普通van Emde Boas树_权值线段树
BZOJ_3685_普通van Emde Boas树_权值线段树
Description
设计数据结构支持:
1 x 若x不存在,插入x
2 x 若x存在,删除x
3 输出当前最小值,若不存在输出-1
4 输出当前最大值,若不存在输出-1
5 x 输出x的前驱,若不存在输出-1
6 x 输出x的后继,若不存在输出-1
7 x 若x存在,输出1,否则输出-1
Input
第一行给出n,m 表示出现数的范围和操作个数
接下来m行给出操作
n<=10^6,m<=2*10^6,0<=x<n
Output
Sample Input
1 1
1 2
1 3
7 1
7 4
2 1
3
2 3
4
5 3
6 2
Sample Output
1
-1
2
2
2
-1
权值线段树写的,感觉不是很慢。
唯一需要注意的是56操作时给出的x可能小于最小值/最大值,这时需要输出-1。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 1000050
#define ls p<<1
#define rs p<<1|1
#define maxn (n-1)
inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd() {
register int x=0; register char s=nc();
while(s<'0'||s>'9') s=nc();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
int t[N<<2],n,m,now;
void insert(int l,int r,int x,int v,int p) {
if(l==r) {
if(v==0) {
if(t[p]==0) now++;
t[p]=1;
}else {
if(t[p]==1) now--;
t[p]=0;
}
return ;
}
int mid=(l+r)>>1;
if(x<=mid) insert(l,mid,x,v,ls);
else insert(mid+1,r,x,v,rs);
t[p]=t[ls]+t[rs];
}
int get_rank(int l,int r,int x,int p) {
if(l==r) return 1;
int mid=(l+r)>>1;
if(x<=mid) return get_rank(l,mid,x,ls);
else return get_rank(mid+1,r,x,rs)+t[ls];
}
int get_x(int l,int r,int k,int p) {
if(l==r) return l;
int mid=(l+r)>>1;
if(k<=t[ls]) return get_x(l,mid,k,ls);
else return get_x(mid+1,r,k-t[ls],rs);
}
int calcmin(int l,int r,int p) {
if(l==r) return l;
int mid=(l+r)>>1;
if(t[ls]) return calcmin(l,mid,ls);
else return calcmin(mid+1,r,rs);
}
int calcmax(int l,int r,int p) {
if(l==r) return l;
int mid=(l+r)>>1;
if(t[rs]) return calcmax(mid+1,r,rs);
else return calcmax(l,mid,ls);
}
int exist(int l,int r,int x,int p) {
if(l==r) return t[p]?1:-1;
int mid=(l+r)>>1;
if(x<=mid) return exist(l,mid,x,ls);
else return exist(mid+1,r,x,rs);
}
int main() {
n=rd(); m=rd();
int i,x,opt;
for(i=1;i<=m;i++) {
opt=rd();
if(opt!=3&&opt!=4) x=rd();
if(opt==1) {
insert(0,maxn,x,0,1);
}else if(opt==2) {
insert(0,maxn,x,1,1);
}else if(opt==3) {
printf("%d\n",now?calcmin(0,maxn,1):-1);
}else if(opt==4) {
printf("%d\n",now?calcmax(0,maxn,1):-1);
}else if(opt==5) {
if(x<=calcmin(0,maxn,1)) puts("-1");
else {
int k=get_rank(0,maxn,x,1)-1;
printf("%d\n",get_x(0,maxn,k,1));
}
}else if(opt==6) {
if(x>=calcmax(0,maxn,1)) puts("-1");
else {
int k=get_rank(0,maxn,x+1,1);
printf("%d\n",get_x(0,maxn,k,1));
}
}else {
printf("%d\n",exist(0,maxn,x,1));
}
}
}
BZOJ_3685_普通van Emde Boas树_权值线段树的更多相关文章
- 3065: 带插入区间K小值_树套树_替罪羊树_权值线段树
经过周六一天,周一3个小时的晚自习,周二2个小时的疯狂debug,终于凭借自己切掉了这道树套树题. Code: #include <cstdio> #include <algorit ...
- BZOJ_2161_布娃娃_权值线段树
BZOJ_2161_布娃娃_权值线段树 Description 小时候的雨荨非常听话,是父母眼中的好孩子.在学校是老师的左右手,同学的好榜样.后来她成为艾利斯顿第二 代考神,这和小时候培养的良好素质是 ...
- B20J_2733_[HNOI2012]永无乡_权值线段树合并
B20J_2733_[HNOI2012]永无乡_权值线段树合并 Description:n座岛,编号从1到n,每座岛都有自己的独一无二的重要度,按照重要度可以将这n座岛排名,名次用1到 n来表示.某些 ...
- BZOJ_1503_[NOI2004]郁闷的出纳员_权值线段树
BZOJ_1503_[NOI2004]郁闷的出纳员_权值线段树 Description OIER公司是一家大型专业化软件公司,有着数以万计的员工.作为一名出纳员,我的任务之一便是统计每位员工的 工资. ...
- 【bzoj3065】带插入区间K小值 替罪羊树套权值线段树
题目描述 从前有n只跳蚤排成一行做早操,每只跳蚤都有自己的一个弹跳力a[i].跳蚤国王看着这些跳蚤国欣欣向荣的情景,感到非常高兴.这时跳蚤国王决定理性愉悦一下,查询区间k小值.他每次向它的随从伏特提出 ...
- 主席树 【权值线段树】 && 例题K-th Number POJ - 2104
一.主席树与权值线段树区别 主席树是由许多权值线段树构成,单独的权值线段树只能解决寻找整个区间第k大/小值问题(什么叫整个区间,比如你对区间[1,8]建立一颗对应权值线段树,那么你不能询问区间[2,5 ...
- [bzoj2733][HNOI2012]永无乡_权值线段树_线段树合并
永无乡 bzoj-2733 HNOI-2012 题目大意:题目链接. 注释:略. 想法: 它的查询操作非常友善,就是一个联通块内的$k$小值. 故此我们可以考虑每个联通块建一棵权值线段树. 这样的话每 ...
- [jdoj1258]野生动物园(change by panxf)_权值线段树_组合数
人品计算 题目大意:n个数的a序列,m组询问.每次询问给出T,A,B,K.求在a序列的[A,B]的位置之内的K小值P,的$C_{T}^{P \% T} \% 10111$. 注释:每组询问保证区间只相 ...
- BZOJ 3110 ZJOI 2013 K大数查询 树套树(权值线段树套区间线段树)
题目大意:有一些位置.这些位置上能够放若干个数字. 如今有两种操作. 1.在区间l到r上加入一个数字x 2.求出l到r上的第k大的数字是什么 思路:这样的题一看就是树套树,关键是怎么套,怎么写.(话说 ...
随机推荐
- Day12 前端html
前端基础之HTML 老师博客: http://www.cnblogs.com/yuanchenqi/articles/6835654.html http://www.cnblogs.com/yuanc ...
- html5 标签在 IE 下使用
(function(){if(!/*@cc_on!@*/0)return;var e = "abbr,article,aside,audio,bb,canvas,datagrid,datal ...
- vscode 停用插件自动更新
- 架构之ELK日志分析系统
ELK多种架构及优劣 既然要谈ELK在大数据运维系统中的应用,那么ELK架构就不得不谈.本章节引出四种笔者曾经用过的ELK架构,并讨论各种架构所适合的场景和优劣供大家参考. 先大致介绍ELK组件.EL ...
- Java多线程:synchronized的可重入性
从Java多线程:线程间通信之volatile与sychronized这篇文章中我们了解了synchronized的基本特性,知道了一旦有一个线程访问某个对象的synchronized修饰的方法或代码 ...
- Python之路,进程、线程、协程篇
本节内容 进程.与线程区别 cpu运行原理 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者 ...
- Scrapy爬虫框架第一讲(Linux环境)
1.What is Scrapy? 答:Scrapy是一个使用python语言(基于Twistec框架)编写的开源网络爬虫框架,其结构清晰.模块之间的耦合程度低,具有较强的扩张性,能满足各种需求.(前 ...
- 洛谷 P1054 解题报告
P1054 等价表达式 题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的 ...
- 【踩坑】iconfont使用异常bug
你见过html页面上'x'字符变成打印机图标么?一般人应该没有. -----------------------诡异bug----------------------- 今天测试报了一个bug,说页面 ...
- [CVPR 2016] Weakly Supervised Deep Detection Networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...