题意:n个连续的点,有若干种颜色,每个颜色会因为某些操作变为另一种颜色,动态查询颜色段数。

解题思路:对每个颜色开一棵平衡树启发式合并应该是最裸的想法,但是我们有更优的!

考虑对每个颜色利用链表储存它的集合,在合并两种颜色时可以很简单通过对比原节点位置的前后颜色来进行答案的更新,然后利用启发式合并进行保证合并效率即可。

总复杂度: \( O( q \log c ) \) / \( O (c) \) C表示颜色数。(目前是BZOJ Rank2 200ms)

#include <stdio.h>
#define MN 100005
#define MC 1000005
#define r register
#define getchar() (S==TT&&(TT=(S=BB)+fread(BB,1,1<<15,stdin),TT==S)?EOF:*S++)
char BB[<<],*S=BB,*TT=BB;
inline int read(){
r int x=;r char c;
for (;(c=getchar())<''||c>'';);
for (x=c-'';(c=getchar())>=''&&c<='';x=(x<<)+(x<<)+c-'');
return x;
}
inline void swap(int &a,int &b){a^=b^=a^=b;}
int rt[MC],nxt[MN],s[MC],col[MN],n,q,ans;
inline void merge(int x,int y){
if (s[x]>s[y]){swap(x,y);}
for (r int i=rt[x]; i; i=nxt[i]){
ans-=(col[i-]==y)+(col[i+]==y);
if (!nxt[i]){nxt[i]=rt[y];break;}
}for (r int i=rt[x]; i!=rt[y]; i=nxt[i]) col[i]=y;
rt[y]=rt[x];s[y]+=s[x];s[x]=rt[x]=;
}
void init(){
n=read(),q=read();ans=;
for (int i=; i<=n; ++i) col[i]=read(),nxt[i]=rt[col[i]],rt[col[i]]=i;
for (r int i=; i<=n; ++i) if (col[i]!=col[i-]) ++ans;
}
void solve(){
while(q--){
r int op=read();
if (op==){r int x=read(),y=read();if (x!=y) merge(x,y);}
else printf("%d\n",ans);
}
}
int main(){init();solve();return ;}

【BZOJ1483】【HNOI2009】梦幻布丁的更多相关文章

  1. bzoj1483: [HNOI2009]梦幻布丁(vector+启发式合并)

    1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 4022  Solved: 1640[Submit][Statu ...

  2. 【链表+启发式合并】Bzoj1483 [HNOI2009] 梦幻布丁

    Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. Input 第 ...

  3. BZOJ1483 [HNOI2009]梦幻布丁 【链表 + 启发式合并】

    题目 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色. 例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. 输入格式 第一行给出N,M表示 ...

  4. BZOJ1483: [HNOI2009]梦幻布丁

    传送门 名字起得很高端实际上很简单的算法hhh 启发式合并 简单讲就是一些合并一堆队列的题可以用启发式合并,或者说这是一个思想.每次把小的合并到大的部分,均摊复杂度$O(MlogN)$. //BZOJ ...

  5. BZOJ1483——[HNOI2009]梦幻布丁

    1.题目大意:这题就是给你一个序列,有两个操作,一个是询问序列中的连续段数,比如序列 1 2 2 1就是三段.. 1是一段,2 2 又是一段,1又是一段,就是相同的在一起,第二个操作就是将其中的一种数 ...

  6. bzoj1483: [HNOI2009]梦幻布丁(链表+启发式合并)

    题目大意:一个序列,两种操作. ①把其中的一种数修改成另一种数 ②询问有多少段不同的数如1 2 2 1为3段(1 / 2 2 / 1). 昨晚的BC的C题和这题很类似,于是现学现写居然过了十分开心. ...

  7. 【BZOJ1483】[HNOI2009]梦幻布丁 链表+启发式合并

    [BZOJ1483][HNOI2009]梦幻布丁 Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2 ...

  8. 【bzoj1483】[HNOI2009]梦幻布丁 set

    [bzoj1483][HNOI2009]梦幻布丁 Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2 ...

  9. bzoj 1483 [HNOI2009]梦幻布丁(链表+启发式合并)

    1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1818  Solved: 761[Submit][Status ...

  10. BZOJ 1483: [HNOI2009]梦幻布丁( 链表 + 启发式合并 )

    把相同颜色的串成一个链表, 然后每次A操作就启发式合并, 然后计算对答案的影响. ----------------------------------------------------------- ...

随机推荐

  1. MyGod--Beta版本前期报告

    下一阶段需要改进完善的功能 1.完善购买功能,商品购买后,将生成申请订单,卖家将收到提醒.卖家在完成订单后,可以选择完成订单,商品将下架. 2.完善搜索功能,将界面中的搜索功能添加进去(简单考虑只搜索 ...

  2. day9

    Alpha冲刺Day9 一:站立式会议 今日安排: 经过为期5天的冲刺,基本完成企业人员模块的开发.因第三方机构与企业存在委托的关系.第三方人员对于风险的自查.风险列表的展示以及自查风险的统计展示(包 ...

  3. continue和break的特殊用法。

    break在程序中一般来说的作用就是跳出当前循环,然后再据需执行循环外的语句.continue也是对当前循环来说直接进入到下一次循环.其实我们在程序中有时候循环体嵌套太多,进行到某一步是希望直接bre ...

  4. sql 多条记录插入

    --多条记录插入,用逗号分开值. INSERT dbo.studentinfor ( id, name, class, age, hpsw ) ', -- id - nvarchar(50) N'te ...

  5. Python 简单聊天室

    #coding=utf-8 from socket import * from threading import Thread import time udpSocket = socket(AF_IN ...

  6. 剑指offer-第一个只出现一次的字符

    题目描述 在一个字符串(1<=字符串长度<=10000,全部由字母组成)中找到第一个只出现一次的字符,并返回它的位置   解题思路 由于char类型一共有256种可能,所以开辟一个数组ha ...

  7. 一种dubbo逻辑路由方案(服务化隔离环境)

    背景介绍 现在很多的公司都在用dubbo.springcloud做为服务化/微服务的开发框架,服务化之后应用越来越多,链路越来越长,服务环境的治理变的很困难.比如:研发团队的人很多的,同时有几个分支在 ...

  8. spark2.1:使用df.select(when(a===b,1).otherwise(0))替换(case when a==b then 1 else 0 end)

    最近工作中把一些sql.sh脚本执行hive的语句升级为spark2.1版本,其中遇到将case when 替换为scala操作df的方式实现的问题: 代码数据: scala> import o ...

  9. from sys import argv

    from sys import argv  初学理解: sys 为内置模块,提供了许多函数和变量来处理 Python 运行时环境的不同部分.是固定的用法,不能自己随便写名字代替它,这行的作用就是要把用 ...

  10. Spring学习(1)——快速入门

    认识 Spring 框架 Spring 框架是 Java 应用最广的框架,它的成功来源于理念,而不是技术本身,它的理念包括 IoC (Inversion of Control,控制反转) 和 AOP( ...