解题思路类似莫比乌斯函数之和

题目大意:求[1,n]内的欧拉函数$\varphi$之和。($n<=2*10^{9}$)

思路:令$ M(n)=\sum_{i=1}^{n}\varphi (i)  $,题目所求即为$ M(n) $。

由于$ \sum_{d|n} \varphi (d)=n $ ,所以$ \sum_{i=1}^{n} \sum_{d|i} \varphi (d)=\frac{n(n+1)}{2} $

令$ i=kd $,则有$ \sum_{i=1}^{n} \sum_{d|i} \varphi (d)= \sum_{k=1}^{n} \sum_{d=1}^{\left \lfloor n/k \right \rfloor} \varphi (d) = \sum_{k=1}^{n} M(\left \lfloor n/k \right \rfloor) =\frac{n(n+1)}{2} $

那么$ M(n)=\frac{n(n+1)}{2}-\sum_{i=2}^{n} M(\left \lfloor n/i \right \rfloor) $

由于$ \left \lfloor n/i \right \rfloor $的取值只有$ O(\sqrt{n}) $种,预处理出前$ n^{\frac{2}{3}} $的$ M(n) $,然后记忆化搜索,可以证明总时间复杂度为$ O(n^{\frac{2}{3}}) $。

#include<cstdio>
#define ll long long
#define MN 1600000
#define MOD 2333333
struct edge{edge*nx;ll f;int x;}*h[MOD];
ll f[MN+];
int p[MN+],pn;
bool u[MN+];
ll cal(int n)
{
if(n<=MN)return f[n];
for(edge*i=h[n%MOD];i;i=i->nx)if(i->x==n)return i->f;
edge*np=new edge;*np=(edge){h[n%MOD],1LL*n*(n+)>>,n};h[n%MOD]=np;
for(int i=,ls;i<=n;i=ls+)ls=n/(n/i),np->f-=(ls-i+)*cal(n/i);
return np->f;
}
int main()
{
int n,i,j;
scanf("%d",&n);
for(f[]=,i=;i<=MN;++i)
{
if(!u[i])p[++pn]=i,f[i]=i-;
for(j=;i*p[j]<=MN&&(u[i*p[j]]=);++j)
if(i%p[j])f[i*p[j]]=f[i]*(p[j]-);
else{f[i*p[j]]=f[i]*p[j];break;}
f[i]+=f[i-];
}
printf("%lld",cal(n));
}

[BZOJ]4805: 欧拉函数求和的更多相关文章

  1. BZOJ 4805: 欧拉函数求和 杜教筛

    https://www.lydsy.com/JudgeOnline/problem.php?id=4805 给出一个数字N,求sigma(phi(i)),1<=i<=N https://b ...

  2. 【刷题】BZOJ 4805 欧拉函数求和

    Description 给出一个数字N,求sigma(phi(i)),1<=i<=N Input 正整数N.N<=2*10^9 Output 输出答案. Sample Input 1 ...

  3. BZOJ4805: 欧拉函数求和(杜教筛)

    4805: 欧拉函数求和 Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 614  Solved: 342[Submit][Status][Discus ...

  4. 【BZOJ4805】欧拉函数求和(杜教筛)

    [BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...

  5. poj3090欧拉函数求和

    E - (例题)欧拉函数求和 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:65536KB     ...

  6. HDU2824-The Euler function-筛选法求欧拉函数+求和

    欧拉函数: φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1.p2-pk为n的所有素因子.比如:φ(12)=12*(1-1/2)(1-1/3)=4.可以用类似求素数的筛 ...

  7. BZOJ 4802 欧拉函数

    4802: 欧拉函数 Description 已知N,求phi(N) Input 正整数N.N<=10^18 Output 输出phi(N) Sample Input 8 Sample Outp ...

  8. BZOJ 4802 欧拉函数(Pollard_Rho)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4802 [题目大意] 已知N,求phi(N),N<=10^18 [题解] 我们用P ...

  9. [bzoj 2818]欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 枚举最大公约数,对于每一个质数p,只需要求出1<=x,y<=(n/p)范 ...

随机推荐

  1. 关于python中的operator.itemgetter()函数的用法

    1. operator.itemgetter(num)函数 表示对对象的第num维数据进行操作获取. >>>import operator >>>a = [1, 2 ...

  2. 【Swift】Runtime动态性分析

    Swift是苹果2014年发布的编程开发语言,可与Objective-C共同运行于Mac OS和iOS平台,用于搭建基于苹果平台的应用程序.Swift已经开源,目前最新版本为2.2.我们知道Objec ...

  3. Markdown文本测试

    一级标题 二级标题 三级标题 四级标题 五级标题 六级标题 1. 这是一 2. 这是二 这是无序符号 My Github 这是着重表示 这是斜体 一级粗体 二级斜体 cin >> a; c ...

  4. HTML5的新的结构元素介绍

    HTML5的新的结构元素介绍 一.HTML5与HTML4的区别 1. 取消了一些过时的HTML4的标签 其中包括纯粹显示效果的标记,如<font>和<center>,它们已经被 ...

  5. DistBlockNet:A Distributed Blockchains-Based Secure SDN Architecture for IOT Network

    现有问题 随着IOT中智能设备多样性和数目的增加,IOT的灵活性,效率,可用性,安全性和可扩展性的问题越来越明显. 实验目标 按照高适应性,可用性,容错性,性能,可靠性,可扩展性和安全性的设计原则,构 ...

  6. 使用 PuTTY 从 Windows 连接到 Linux 实例

    启动您的实例之后,您可以连接到该实例,然后像使用您面前的计算机一样来使用它. Note 启动实例后,需要几分钟准备好实例,以便您能连接到实例.检查您的实例是否通过了状态检查 - 您可以在 Instan ...

  7. 微信小程序轮播图

    swiper标签 <!--index.wxml--> <swiper class="swiper" indicator-dots="true" ...

  8. mui 页面无法下滑拖拽 主要体现在华为手机浏览器

    项目做到中期遇到一个问题,华为手机有些页面显示不全且无法下滑. 因为之前一直用的Google浏览器的模拟模式进行开发和调试的,一直未发现这个问题. 刚开始 选用mui的下拉刷新上拉加载的方式来进行页面 ...

  9. 使用静态基类方案让 ASP.NET Core 实现遵循 HATEOAS Restful Web API

    Hypermedia As The Engine Of Application State (HATEOAS) HATEOAS(Hypermedia as the engine of applicat ...

  10. 看漫画学Flux

    原文地址:A cartoon guide to Flux - by Lin Clark Flux在目前web开发中最受欢迎也较不被人理解,本文会以简单易懂的方式解释它. 出现问题 首先,我要声明Flu ...