●BZOJ 2119 股市的预测
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=2119
题解:
这个题很好的。
首先把序列转化为差分序列,
问题转化为找到合法的子序列,使得去除最中间的 M长度,剩下的头尾完全相同。
枚举重现的长度 len,
然后在序列中每len个长度打一个标记,不难发现,如题所述的A部分一定只包含一个标记点。
然后枚举每个被标记的点 i,得到对应的 j=i+len+M,
然后求出 i和 j 向前向后可匹配的最大长度 L,R
那么对答案的贡献即为 max(0,(min(L-1,len-1)+min(R-1,len-1)+1)-len+1)
要记得离散化。要建两个后缀数组(正逆向)。可以不用long long。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 50050
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
int ta[MAXN],tb[MAXN],cc[MAXN],log2[MAXN];
struct SAY{
int sa[MAXN],rak[MAXN],hei[MAXN],stm[MAXN][18],*x,*y,h;
void build(int N,int M,int *a){
x=ta; y=tb; h=0; a[N]=-1;
for(int i=0;i<M;i++) cc[i]=0;
for(int i=0;i<N;i++) cc[x[i]=a[i]]++;
for(int i=1;i<M;i++) cc[i]+=cc[i-1];
for(int i=N-1;i>=0;i--) sa[--cc[x[i]]]=i;
for(int k=1,p;p=0,k<N;k<<=1){
for(int i=N-k;i<N;i++) y[p++]=i;
for(int i=0;i<N;i++) if(sa[i]>=k) y[p++]=sa[i]-k;
for(int i=0;i<M;i++) cc[i]=0;
for(int i=0;i<N;i++) cc[x[y[i]]]++;
for(int i=1;i<M;i++) cc[i]+=cc[i-1];
for(int i=N-1;i>=0;i--) sa[--cc[x[y[i]]]]=y[i];
swap(x,y); y[N]=-1; x[sa[0]]=0; M=1;
for(int i=1;i<N;i++)
x[sa[i]]=y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]?M-1:M++;
if(M>=N) break;
}
for(int i=0;i<N;i++) rak[sa[i]]=i;
for(int i=0,j;i<N;i++){
if(h) h--;
if(rak[i]){
j=sa[rak[i]-1];
while(a[i+h]==a[j+h]) h++;
}
stm[rak[i]][0]=hei[rak[i]]=h;
}
for(int k=1;k<=log2[N];k++)
for(int i=(1<<k)-1;i<N;i++)
stm[i][k]=min(stm[i-(1<<(k-1))][k-1],stm[i][k-1]);
}
int query(int l,int r){
static int k;
l=rak[l]; r=rak[r];
if(l>r) swap(l,r); l++;
k=log2[r-l+1];
return min(stm[l+(1<<k)-1][k],stm[r][k]);
}
}suf1,suf2;
int A[MAXN],B[MAXN],tmp[MAXN];
int N,ANS,cnt,D;
int main()
{
scanf("%d%d",&N,&D);
log2[1]=0; for(int i=2;i<=50000;i++) log2[i]=log2[i>>1]+1;
for(int i=0;i<N;i++) scanf("%d",&A[i]);
for(int i=0;i<N-1;i++) A[i]=A[i+1]-A[i],tmp[i]=A[i]; N--;
sort(tmp,tmp+N); cnt=unique(tmp,tmp+N)-tmp;
for(int i=0;i<N;i++) A[i]=lower_bound(tmp,tmp+cnt,A[i])-tmp;
suf1.build(N,N+10,A);
for(int i=0;i<N;i++) B[N-1-i]=A[i];
suf2.build(N,N+10,B);
for(int len=1,L,R;len<N/2;len++)
for(int i=0,j;i<N;i+=len){
j=i+len+D; if(j>=N) break;
L=suf1.query(i,j);
R=suf2.query(N-1-i,N-1-j);
ANS+=max(0,min(L-1,len-1)+min(R-1,len-1)+1-len+1);
}
printf("%d",ANS);
return 0;
}
●BZOJ 2119 股市的预测的更多相关文章
- BZOJ 2119: 股市的预测 [后缀数组 ST表]
2119: 股市的预测 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 331 Solved: 153[Submit][Status][Discuss ...
- BZOJ 2119: 股市的预测 SA
2119: 股市的预测 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 434 Solved: 200[Submit][Status][Discuss ...
- bzoj 2119: 股市的预测
Description 墨墨的妈妈热爱炒股,她要求墨墨为她编写一个软件,预测某只股票未来的走势.股票折线图是研究股票的必备工具,它通过一张时间与股票的价位的函数图像清晰地展示了股票的走势情况.经过长时 ...
- bzoj 2119 股市的预测——枚举长度的关键点+后缀数组
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2119 就是找差分序列上中间差 m 的相等的两段. 考虑枚举这样一段的长度 L .可以把序列分 ...
- bzoj 2119 股市的预测 —— 枚举关键点+后缀数组
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2119 思路就是对于这个形如 ABA 的串,枚举 A 的长度,并按照长度分出几块,找到一些关键 ...
- BZOJ 2119 股市的预测 (后缀数组+RMQ)
题目大意:求一个字符串中形如$ABA$的串的数量,其中$B$的长度是给定的 有点像[NOI2016]优秀的拆分这道题 先对序列打差分,然后离散,再正反跑$SA$,跑出$st$表 进入正题 $ABA$串 ...
- BZOJ 2119 股市的预测(后缀数组)
首先要差分+离散化. 然后就是求形如ABA的串有多少,其中B的长度确定为k. 我们用到了设置关键点的思想.我们枚举A的长度L.然后在\(1,1+L,1+L*2,1+L*3...\)设置关键点.然后我们 ...
- BZOJ 2119: 股市的预测 (Hash / 后缀数组 + st表)
转博客大法好 自己画一画看一看,就会体会到这个设置关键点的强大之处了. CODE(sa) O(nlogn)→1436msO(nlogn)\to 1436msO(nlogn)→1436ms #inclu ...
- 【BZOJ 2119】 2119: 股市的预测 (后缀数组+分块+RMQ)
2119: 股市的预测 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 404 Solved: 188 Description 墨墨的妈妈热爱炒股,她 ...
随机推荐
- SaaS的那些事儿
前两年... 大一大二期间,不知道软件架构.云服务器.数据库为何物,偶尔听过却从未用过.天天学的写的东西都是一些命令行代码,所幸在学完<数据结构>和<算法导论>后能够独立实 ...
- Flask 学习 十三 应用编程接口
最近这些年,REST已经成为web services和APIs的标准架构,很多APP的架构基本上是使用RESTful的形式了. REST的六个特性: 客户端-服务器(Client-Server)服务器 ...
- Java语言基础组成
写完才发现,这个博客不提供目录这个功能,真是想骂爹了...... 目录 关键字 标识符 注释 常量和变量 运算符 语句 函数 数组 1.关键字 描述:刚刚开始学这个的时候,真是傻傻分不清楚,不过没关系 ...
- 学大伟业 国庆Day2
期望得分:30+100+0=130 实际得分:30+100+20=150 忍者钩爪 (ninja.pas/c/cpp) [问题描述] 小Q是一名酷爱钩爪的忍者,最喜欢飞檐走壁的感觉,有一天小Q发现一个 ...
- python之路--day8---day9--两日内容
一.不使用函数的问题 1,代码的组织结构不清晰,可读性差 2,遇到重复的功能只能重复编写实现代码,代码冗余 3,功能需要扩展时,需要找出所有实现该功能的地方修改,无法统一管理且维护难度极大 二.函数是 ...
- CSS <input type="file">样式设置
这是最终想要的效果~~~ 实现很简单,div设置背景图片,<input type="file"/>绝对定位上去再设置opacity:0(透明度为0 ) 直接上代码,希望 ...
- angular2 学习笔记 ( angular cli & npm version manage npm 版本管理 )
更新 : 2017-05-05 现在流行 Yarn ! 它是 facebook google 推出的东西. 算是补助 npm 做的不够好的地方. 源码依然是发布去 npm,只是下载接口换掉罢了哦. n ...
- ASP.NET CORE系列【二】使用Entity Framework Core进行增删改查
介绍 EntityFrameworkCore EF core 是一个轻量级的,可扩展的EF的跨平台版本.对于EF而言 EF core 包含许多提升和新特性,同时 EF core 是一个全新的代码库,并 ...
- Python3安装Requests
安装Requests费了1天的时间,囧.终于还是在官网找到解决方法,可以参考这个http://docs.python-requests.org/en/latest/user/install/#inst ...
- SpringBoot框架中JPA使用的一些问题
主要是自己在使用JPA框架时遇到的一个坑,拿出来分享一下 首先上一个简单JPA框架实体 public interface EnterpriseInfoDao extends JpaSpecificat ...