Check Corners

Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2377    Accepted Submission(s): 859

Problem Description
Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 <= i <= m, 1 <= j <= n ). Now he selects some sub-matrices, hoping to find the maximum number. Then he finds that there may be more than one maximum number, he also wants
to know the number of them. But soon he find that it is too complex, so he changes his mind, he just want to know whether there is a maximum at the four corners of the sub-matrix, he calls this “Check corners”. It’s a boring job when selecting too many sub-matrices,
so he asks you for help. (For the “Check corners” part: If the sub-matrix has only one row or column just check the two endpoints. If the sub-matrix has only one entry just output “yes”.)
 
Input
There are multiple test cases.

For each test case, the first line contains two integers m, n (1 <= m, n <= 300), which is the size of the row and column of the matrix, respectively. The next m lines with n integers each gives the elements of the matrix which fit in non-negative 32-bit integer.

The next line contains a single integer Q (1 <= Q <= 1,000,000), the number of queries. The next Q lines give one query on each line, with four integers r1, c1, r2, c2 (1 <= r1 <= r2 <= m, 1 <= c1 <= c2 <= n), which are the indices of the upper-left corner
and lower-right corner of the sub-matrix in question. 

 
Output
For each test case, print Q lines with two numbers on each line, the required maximum integer and the result of the “Check corners” using “yes” or “no”. Separate the two parts with a single space.
 
Sample Input
4 4
4 4 10 7
2 13 9 11
5 7 8 20
13 20 8 2
4
1 1 4 4
1 1 3 3
1 3 3 4
1 1 1 1
 
Sample Output
20 no
13 no
20 yes
4 yes

题意:

每次查询求解一个矩阵中的最大值,并判断是否与这个矩阵的四角相等。

/*
二维RMQ的思路与一维的大致相同,都是借助dp先进行预处理,然后快速查询
hhh-2016-01-30 01:59:55
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <algorithm>
#include <cmath>
#include <queue>
#include <map>
#include <vector>
typedef long long ll;
using namespace std; const int maxn = 305;
int dp[maxn][maxn][9][9];
int tmap[maxn][maxn];
int mm[maxn];
void iniRMQ(int n,int m)
{
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
dp[i][j][0][0] = tmap[i][j];
for(int ti = 0; ti <= mm[n]; ti++)
for(int tj = 0; tj <= mm[m]; tj++)
if(ti+tj)
for(int i = 1; i+(1<<ti)-1 <= n; i++)
for(int j = 1; j+(1<<tj)-1 <= m; j++)
{
if(ti)
dp[i][j][ti][tj] =
max(dp[i][j][ti-1][tj],dp[i+(1<<(ti-1))][j][ti-1][tj]);
else
dp[i][j][ti][tj] =
max(dp[i][j][ti][tj-1],dp[i][j+(1<<(tj-1))][ti][tj-1]);
}
} int RMQ(int x1,int y1,int x2,int y2)
{
int k1 = mm[x2-x1+1];
int k2 = mm[y2-y1+1];
x2 = x2 - (1<<k1) +1;
y2 = y2 - (1<<k2) +1;
return
max(max(dp[x1][y1][k1][k2],dp[x1][y2][k1][k2]),
max(dp[x2][y1][k1][k2],dp[x2][y2][k1][k2]));
} int main()
{
int n,m;
mm[0] = -1;
for(int i =1 ; i <= 301; i++)
mm[i] = ((i&(i-1)) == 0)? mm[i-1]+1:mm[i-1];
while(scanf("%d%d",&n,&m)==2)
{
for(int i =1; i <= n; i++)
for(int j = 1; j <= m; j++)
scanf("%d",&tmap[i][j]);
iniRMQ(n,m);
int k;
scanf("%d",&k);
while(k--)
{
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
int ans = RMQ(x1,y1,x2,y2);
printf("%d ",ans); if(ans == tmap[x1][y1] || ans == tmap[x1][y2]
|| ans == tmap[x2][y1]|| ans == tmap[x2][y2])
printf("yes\n");
else
printf("no\n");
}
}
return 0;
}

  

hdu 2888 二维RMQ模板题的更多相关文章

  1. hdu 2888 二维RMQ

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  2. poj2019 二维RMQ模板题

    和hdu2888基本上一样的,也是求一个矩阵内的极值 #include<iostream> #include<cstring> #include<cstdio> # ...

  3. hduacm 2888 ----二维rmq

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题  直接用二维rmq 读入数据时比较坑爹  cin 会超时 #include <cstdio& ...

  4. poj2019 二维RMQ裸题

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:8623   Accepted: 4100 Descrip ...

  5. 二维RMQ模板

    int main(){ ; i <= n; i++) ; j <= m; j++) { scanf("%d", &val[i][j]); dp[i][j][][ ...

  6. Cornfields POJ - 2019(二维RMQ板题)

    就是求子矩阵中最大值与最小值的差... 板子都套不对的人.... #include <iostream> #include <cstdio> #include <sstr ...

  7. HDU 2888:Check Corners(二维RMQ)

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 题意:给出一个n*m的矩阵,还有q个询问,对于每个询问有一对(x1,y1)和(x2,y2),求这个子矩阵中 ...

  8. POJ 2019 Cornfields [二维RMQ]

    题目传送门 Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7963   Accepted: 3822 ...

  9. Zeratul的完美区间(线段树||RMQ模板题)

    原题大意:原题链接 给定元素无重复数组,查询给定区间内元素是否连续 解体思路:由于无重复元素,所以如果区间内元素连续,则该区间内的最大值和最小值之差应该等于区间长度(r-l) 解法一:线段树(模板题) ...

随机推荐

  1. Fluent Interface(流式接口)

    我最初接触这个概念是读自<<模式-工程化实现及扩展>>,另外有Martin fowler大师 所写http://martinfowler.com/bliki/FluentInt ...

  2. Codeforces 193 D. Two Segments

    http://codeforces.com/contest/193/problem/D 题意: 给一个1~n的排列,在这个排列中选出两段区间,求使选出的元素排序后构成公差为1的等差数列的方案数. 换个 ...

  3. python 面向对象设计思想发展史

    这篇主要说的是程序设计思想发展历史,分为概述和详细发展历史 一,概述 1940年以前:面向机器 最早的程序设计都是采用机器语言来编写的,直接使用二进制码来表示机器能够识别和执行的 指令和数 据.简单来 ...

  4. Django-rest-framework源码分析----认证

    一.前言 1.1.安装 两种方式: github pip直接安装 pip install django-rest-framework 1.2.需要先了解的一些知识 理解下面两个知识点非常重要,djan ...

  5. Python之旅_计算机基础入门

    一.计算机基础 1.Python是编程语言 语言:一种事物与另一种事物沟通的介质. 编程语言:程序员与计算机沟通的介质. 什么是编程:程序员用编程语言把自己的逻辑思想下来,编程的结果就是一堆文件. 为 ...

  6. Andrew Ng机器学习第一章——单变量线性回归

    监督学习算法工作流程 h代表假设函数,h是一个引导x得到y的函数 如何表示h函数是监督学习的关键问题 线性回归:h函数是一个线性函数 代价函数 在线性回归问题中,常常需要解决最小化问题.代价函数常用平 ...

  7. axure 预览"HTTP/1.1 302 Found"

    使用Axure编辑原型时,点击预览出现"HTTP/1.1 302 Found" 第一想到的就是重新安装Axure和检查原型文件是否损坏,验证后证明前Axure和.rp文件都是完好的 ...

  8. webgoat——XSS

    Stage 1: Stored XSS(存储XSS攻击 黑别人) 实验内容:主要是用户"Tom"(攻击者)在自己的个人资料中添加了恶意代码(比如最简单的<script> ...

  9. python多进程之间的通信:消息队列Queue

    python中进程的通信:消息队列. 我们知道进程是互相独立的,各自运行在自己独立的内存空间. 所以进程之间不共享任何变量. 我们要想进程之间互相通信,传送一些东西怎么办? 需要用到消息队列!! 进程 ...

  10. 复习HTML+CSS(3)

    n  超级链接 l  语法格式:<a 属性 = "值">---</a> l  常用属性: n  Href:目标文件的地址URL,该URL可以是相对地址,也可 ...