Check Corners

Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2377    Accepted Submission(s): 859

Problem Description
Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 <= i <= m, 1 <= j <= n ). Now he selects some sub-matrices, hoping to find the maximum number. Then he finds that there may be more than one maximum number, he also wants
to know the number of them. But soon he find that it is too complex, so he changes his mind, he just want to know whether there is a maximum at the four corners of the sub-matrix, he calls this “Check corners”. It’s a boring job when selecting too many sub-matrices,
so he asks you for help. (For the “Check corners” part: If the sub-matrix has only one row or column just check the two endpoints. If the sub-matrix has only one entry just output “yes”.)
 
Input
There are multiple test cases.

For each test case, the first line contains two integers m, n (1 <= m, n <= 300), which is the size of the row and column of the matrix, respectively. The next m lines with n integers each gives the elements of the matrix which fit in non-negative 32-bit integer.

The next line contains a single integer Q (1 <= Q <= 1,000,000), the number of queries. The next Q lines give one query on each line, with four integers r1, c1, r2, c2 (1 <= r1 <= r2 <= m, 1 <= c1 <= c2 <= n), which are the indices of the upper-left corner
and lower-right corner of the sub-matrix in question. 

 
Output
For each test case, print Q lines with two numbers on each line, the required maximum integer and the result of the “Check corners” using “yes” or “no”. Separate the two parts with a single space.
 
Sample Input
4 4
4 4 10 7
2 13 9 11
5 7 8 20
13 20 8 2
4
1 1 4 4
1 1 3 3
1 3 3 4
1 1 1 1
 
Sample Output
20 no
13 no
20 yes
4 yes

题意:

每次查询求解一个矩阵中的最大值,并判断是否与这个矩阵的四角相等。

/*
二维RMQ的思路与一维的大致相同,都是借助dp先进行预处理,然后快速查询
hhh-2016-01-30 01:59:55
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <algorithm>
#include <cmath>
#include <queue>
#include <map>
#include <vector>
typedef long long ll;
using namespace std; const int maxn = 305;
int dp[maxn][maxn][9][9];
int tmap[maxn][maxn];
int mm[maxn];
void iniRMQ(int n,int m)
{
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
dp[i][j][0][0] = tmap[i][j];
for(int ti = 0; ti <= mm[n]; ti++)
for(int tj = 0; tj <= mm[m]; tj++)
if(ti+tj)
for(int i = 1; i+(1<<ti)-1 <= n; i++)
for(int j = 1; j+(1<<tj)-1 <= m; j++)
{
if(ti)
dp[i][j][ti][tj] =
max(dp[i][j][ti-1][tj],dp[i+(1<<(ti-1))][j][ti-1][tj]);
else
dp[i][j][ti][tj] =
max(dp[i][j][ti][tj-1],dp[i][j+(1<<(tj-1))][ti][tj-1]);
}
} int RMQ(int x1,int y1,int x2,int y2)
{
int k1 = mm[x2-x1+1];
int k2 = mm[y2-y1+1];
x2 = x2 - (1<<k1) +1;
y2 = y2 - (1<<k2) +1;
return
max(max(dp[x1][y1][k1][k2],dp[x1][y2][k1][k2]),
max(dp[x2][y1][k1][k2],dp[x2][y2][k1][k2]));
} int main()
{
int n,m;
mm[0] = -1;
for(int i =1 ; i <= 301; i++)
mm[i] = ((i&(i-1)) == 0)? mm[i-1]+1:mm[i-1];
while(scanf("%d%d",&n,&m)==2)
{
for(int i =1; i <= n; i++)
for(int j = 1; j <= m; j++)
scanf("%d",&tmap[i][j]);
iniRMQ(n,m);
int k;
scanf("%d",&k);
while(k--)
{
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
int ans = RMQ(x1,y1,x2,y2);
printf("%d ",ans); if(ans == tmap[x1][y1] || ans == tmap[x1][y2]
|| ans == tmap[x2][y1]|| ans == tmap[x2][y2])
printf("yes\n");
else
printf("no\n");
}
}
return 0;
}

  

hdu 2888 二维RMQ模板题的更多相关文章

  1. hdu 2888 二维RMQ

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  2. poj2019 二维RMQ模板题

    和hdu2888基本上一样的,也是求一个矩阵内的极值 #include<iostream> #include<cstring> #include<cstdio> # ...

  3. hduacm 2888 ----二维rmq

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题  直接用二维rmq 读入数据时比较坑爹  cin 会超时 #include <cstdio& ...

  4. poj2019 二维RMQ裸题

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:8623   Accepted: 4100 Descrip ...

  5. 二维RMQ模板

    int main(){ ; i <= n; i++) ; j <= m; j++) { scanf("%d", &val[i][j]); dp[i][j][][ ...

  6. Cornfields POJ - 2019(二维RMQ板题)

    就是求子矩阵中最大值与最小值的差... 板子都套不对的人.... #include <iostream> #include <cstdio> #include <sstr ...

  7. HDU 2888:Check Corners(二维RMQ)

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 题意:给出一个n*m的矩阵,还有q个询问,对于每个询问有一对(x1,y1)和(x2,y2),求这个子矩阵中 ...

  8. POJ 2019 Cornfields [二维RMQ]

    题目传送门 Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7963   Accepted: 3822 ...

  9. Zeratul的完美区间(线段树||RMQ模板题)

    原题大意:原题链接 给定元素无重复数组,查询给定区间内元素是否连续 解体思路:由于无重复元素,所以如果区间内元素连续,则该区间内的最大值和最小值之差应该等于区间长度(r-l) 解法一:线段树(模板题) ...

随机推荐

  1. python pdb 调试

    命令行 Python -m pdb xxx.py l ----> list 显示当前代码 n ----> next 向下执行一行代码 c ----> continue 继续执行代码 ...

  2. HTML标签小记文本类标签

    文本类标签: <input type="text" name="" value="">文本框  type(方式,方法)name文 ...

  3. Node入门教程(4)第三章:第一个 Nodejs 程序

    第一个 Nodejs 程序 本教程仅适合您已经有一定的JS编程的基础或者是后端语言开发的基础.如果您是零基础,建议您先学一下老马的前端免费视频教程 第一步:创建项目文件夹 首先创建 demos 文件夹 ...

  4. salesforce零基础学习(八十七)Apex 中Picklist类型通过Control 字段值获取Dependent List 值

    注:本篇解决方案内容实现转自:http://mysalesforceescapade.blogspot.com/2015/03/getting-dependent-picklist-values-fr ...

  5. c#动态加载卸载DLL

    前段时间工作的时候遇到一个问题.就是需要每次启动程序的时候动态替换掉某个dll,所以就百度了这方面的资料.这次记录下来让自己以后可以看. 根据自己的理解,动态卸载dll需要有以下条件: 1:dll在加 ...

  6. AngularJS1.X学习笔记11-服务

    如果我没记错的话,spring里边有个service层.什么是服务呢?个人理解就是很多地方要用的,可以跨越控制器甚至是跨越模块的工具.AngularJS也为我们提供了服务这种机制,这让我们可以将一些不 ...

  7. python入门(6)输入和输出

    python入门(6)输入和输出 输出 >>> print 'hello, world' >>> print 'The quick brown fox', 'jum ...

  8. wmv12下安装centos7

    第一步:安装软件: vmw版本是12,并在vmw下安装centos为CentOS-7-x86_64-DVD-1708.iso: 第二步:修改vmw虚拟网络配置 1)配置VMnet8 修改ip等信息 点 ...

  9. MongoDB的安装和使用指南

    什么是MongoDB   MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案. MongoDB 是一个介于关系数据库和非关系 ...

  10. SQL Server 2014 HADR_DATABASE_WAIT_FOR_TRANSITION_TO_VERSIONING 等待

    最近有发现SAP 的MES系统上了AlwaysOn后辅助节点发现无法查询的情况,例如在辅助节点上执行: SELECT TOP 0 * FROM TABLE1; 语句执行正常SELECT TOP 1* ...